
SKA Regional Centres Network (SRCNet)
Software Architecture Document

SRC-0000001 Revision 01

Classification: UNRESTRICTED

Document type: DDR

Date: 2023-06-01

Status: RELEASED

Authors: Salgado, Jesús; Wicenec, Andreas; Goliath, Sharon; Joshi, Rohini;

Swinbank, John; Bolton, Rosie; Webster, Brendan; Oonk, Johannes;

Grainge, Keith; Sánchez, Susana; Parra, Manuel; Dack, Thomas;

Hardcastle, Martin; Barbosa, Domingos; Llopis, Pablo; Fabbro,

Sébastien; Beswick, Robert; Villote, Jean-Pierre; Breen, Shari; Yates,

Jeremy; Grange, Yan; Gaudet, Séverin; An, Tao; Possenti, Andrea;

Darriba, Laura; Holanda, Victor; Mendoza, Mariangeles; Galluzzi,

Vincenzo; Svedberg, Thomas; Lee-Waddell, Karen; Vitlacil, Dejan;

Pandey, Vishambhar Nath; Akahori, Takuya; Chisholm, Louise;

Horton, Maya; Watson, Robert;

Role Name Designation Affiliation Signature Date

Author J. Salgado

SRCNet

Software

Architect

SKAO

Owner M. van Haarlem

SRC Steering

Committee

Chair

ASTRON

Approver &

Released by
L. Ball

SKAO

Director of

Operations

SKAO

© Copyright 2021 SKA Observatory.

 This work is licensed under a Creative Commons Attribution 4.0 International License

Jesús Salgado 2023-06-14

2023-06-19

Michiel van Haarlem 2023-08-21

http://creativecommons.org/licenses/by/4.0/
https://skaoffice.na1.adobesign.com/verifier?tx=CBJCHBCAABAAdxr0MLxDjhJzfx4YGaRESNFabVWKvFLf
https://skaoffice.na1.adobesign.com/verifier?tx=CBJCHBCAABAAdxr0MLxDjhJzfx4YGaRESNFabVWKvFLf
https://adobecancelledaccountschannel.na1.documents.adobe.com/verifier?tx=CBJCHBCAABAAdxr0MLxDjhJzfx4YGaRESNFabVWKvFLf

TABLE OF CONTENTS
Status of the Document 7

1. Introduction 7

1.1 Scope 7

1.2 Overview 7

1.3 The SKA Regional Centres Network 8

1.3.1 The Square Kilometer Array Observatory (SKAO) 9

1.3.2 SKAO Global HeadQuarters 13

1.3.3 Science Users 13

1.3.4 SRCNet Site Developers 14

1.3.5 Multi-Wavelength and Multi Messenger Facilities 15

1.3.6 SRC Sites 16

1.3.7 SRCNet Operations Group 17

1.4 Federation Considerations 17

1.4.1 The SRCNet data lake and the SRCNet nodes 17

1.4.2 The SRCNet and the SRCNet nodes architecture 18

2. Architectural Representation 19

3. Architectural Goals and Constraints 20

4. Use-Case View 24

4.1. Actors 24

4.2 Use Cases Classification 25

4.3 Assessment of architecture using Use Cases 27
5. Modules View 27

5.1. Architecture Overview 27

5.2. Architecturally Significant Design Packages 30

5.2.1 Presentation Tier 30

5.2.1.1 User Interface 30

5.2.1.2 Interactive Analysis 31

5.2.1.3 System Administration 31

5.2.2 Application Tier API 31

5.2.2.1 Authentication and Authorisation 31

5.2.2.2 Public API 32

5.2.2.3 Management API 32

5.2.3 Application Tier 32

5.2.3.1 System Events and Notifications 32

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 2 of 91

/h.gx2337e0gdde
/h.ep5jybky0j64
/h.py85akac3me4
/h.75syzyfpwx02
/h.61hk5udykr6d
/h.9yxbj9gv1176
/h.l6nwq5qr8sm2
/h.1diws8i6r3tc
/h.m1377wjyfcj6
/h.yhkfu6yd0isi
/h.1qnncpt9yxns
/h.4h5v6in35oo
/h.o74x2bl9v3t2
/h.pfqw7l8olpl7
/h.qbhy82popbmp
/h.qfm7lw25rw66
/h.cf7onfgcnyor
/h.5rvxrgmv3thb
/h.5g5wgaeoxdgg
/h.yx8m00yyaz4q
/h.jdx5gtu2zexa
/h.j42j33fe6f52
/h.myj08yzk6lu
/h.u3n3kq7nr7fj
/h.jj37viiuas86
/h.a3k2hjvcn4c9
/h.he0t9qgh94ym
/h.8s5dmmfgyp7a
/h.m3v60n6qdayt
/h.2a9sszybpx5c
/h.9h2drkb7p4m4
/h.c7yg4siqswj0
/h.xci0649a5rc3
/h.71pvo1ja41zz

5.2.3.2 Monitoring System 32

5.2.3.3 Provenance Management 32

5.2.3.4 Data Management 33

5.2.3.5 Metadata Management 33

5.2.3.6 User and Group Management 33

5.2.3.7 Workflow Management 33

5.2.3.8 Resource Management 33

5.2.4 Resources Tier 34

5.2.4.1 Databases 34

5.2.4.2 Execution Framework 34

5.2.4.3 (Data) Repositories 34

5.3 Architecturally Significant Design Packages: 2nd level decomposition 34

5.3.1 Sub-Package Descriptions 36

5.3.2 Services View 48

5.3.2.1 Data Management Service 49

5.3.2.2 Metadata Management Service 49

5.3.2.3 Workflow Management Service 50

5.3.2.4 Authentication and Authorisation Service 50

5.3.2.5 Services Discovery Service 51

6. Process View 52
6.1. Ingestion of data into SRCNet 53

6.2. Data access during processing SRCNet 54

6.2.1. Data staging approach 55

6.2.2. Data mesh approach 56

6.2.3. Data staging vs Data mesh 58

6.3. Science Platform User Interface pattern 59

6.4. Metadata Management System 61

6.5.1 Metadata Replication 64

6.5. Authentication, Authorisation and Accounting 65

6.5.1 AA Interface possible approaches 66
6.6. Collaborative environment 68

6.6.1. User storage areas 68

6.6.2 Persistent Table Upload 70

6.7. Computational resources allocation and federated execution 71

6.7.1. Shared Execution planner 74

6.8. Distributed software management 76

Appendix 1: Requirements Supporting Architecture Principles 77

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 3 of 91

/h.3pop2soigxow
/h.rswg5bbql8np
/h.nwi9qk37uisb
/h.ohxn61m0omyn
/h.n4qkvfm2vf6e
/h.vbc9kjdd2u25
/h.g3seeswdjuy6
/h.cg4m823wbgg0
/h.1lugpv7e5fq5
/h.7pz8q6fg7dzu
/h.ho3yeuvan9do
/h.2ew99elsana9
/h.tsl99w9659if
/h.ia1a3n33wr1
/h.96y6rhl2scsj
/h.ill3d7jq89ja
/h.8u9r4pibawm1
/h.qatiqjjjst13
/h.uum7kwgnl64b
/h.m6iwwo754x7b
/h.hzuyeq7pzbqu
/h.ecy8d3ig47oy
/h.6uysiig919ak
/h.jsixs28gh41t
/h.sg2iy4lfdo3w
/h.7sejay3ipxo3
/h.cn52vwz4qd5e
/h.jt6w9gzc531m
/h.ig9r71z9qfff
/h.y10lf7sp36rf
/h.cr94402c713w
/h.ekjyviviita1
/h.vo2bhjotlllv
/h.w9wo8x44vrjt
/h.4xwl871uzj5d
/h.mvwkvjm0qnkn
/h.qt6y8omcdrst

Appendix 2: Actors fine-grained classification 86
A2.1 Developer role fine-grain classification 86

A2.2 Scientist role fine-grain classification 87

A2.3 Operator role fine-grain classification 88

References 90

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 4 of 91

/h.1sqix8fz9zd
/h.l2ts3se0r13t
/h.8kb06knx4uc5
/h.yfyn1l2uq8wq
/h.q0vq8tvnyq51

LIST OF FIGURES

■ Figure 1. SRCNet Software Operating Context

■ Figure 2. The ObsProject Lifecycle

■ Figure 3. Extension of Fig.2

■ Figure 4. SRCNet node blueprint conceptual representation.

■ Figure 5. Software Architecture: The "4+1 View" Model.

■ Figure 6. First package decomposition representation of the SRC node blueprint as UML

packages.

■ Figure 7. Condensed SRC node architecture footprint, including layers.

■ Figure 8. Sub-packages decomposition.

■ Figure 9. Services View

■ Figure 10. Data ingestion from telescopes locations into the SRCNet.

■ Figure 11. Data access following the “create local copy” approach.

■ Figure 12. Data access using the data mesh paradigm.

■ Figure 13. Gateway pattern to be used on the client side.

■ Figure 14. Metadata management system architectural diagram.

■ Figure 15. AA Interface using a global proxy.

■ Figure 16. AA Interface not using a global proxy.

■ Figure 17. Diagram showing the access from data of one User Storage Area.

■ Figure 18. Diagram showing the federated execution of one process.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 5 of 91

/id.93pqfho37x2d
/id.7wem8fw9ptgz
/id.cekuoyiiub3y
/id.40proa48wz7y
/id.l71djmbmr0bv
/id.hw4etm5848f5
/id.hw4etm5848f5
/id.e3cfheb2k74h
/id.mkrx81sy4fu1
/id.gyb5pvc346tw
/id.40grmcjt91uf
/id.btkom8xianae
/id.fbbkd2o3j0rc
/id.mvzjocctibep
/id.iqfho2f2woxr
/id.q6deoln6ypad
/id.aq62zm5fhrgm
/id.yrvgoam96hoe
/id.m5bvx91fgum3

LIST OF ABBREVIATIONS

AAI Authentication and Authorisation Infrastructure

ADP Advanced Data Product

API Application Programming Interface

AusSRC Australian SKA Regional Centre

ICD Interface Control Document

IVOA International Virtual Observatory Alliance

KSP Key Science Project

ODP Observatory Data Product

PID Persistent Identifier

PLDP Project-Level Data Product

SDP Science Data Processor

SKA Square Kilometre Array

SRC SKA Regional Centre

SRCNet Network of SKA Regional Centres

SRCSC SRC Steering Committee

TAP Table Access Protocol

UID Unique Identifier

UML Unified Modeling Language

W3C World Wide Web Consortium

WAN Wide Area Network

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 6 of 91

Status of the Document

This document has been produced by the SRNet Architecture Forum. It has been reviewed by SRCNet
Members and the SRC Steering Comittee, and has been endorsed by the SKAO an SRCNet formal
document. It is a stable document and may be used as reference material or cited as a normative
reference from another document.

1. Introduction

1.1 Scope

This document is a technical deliverable describing the SKA Regional Centres (SRCs) Network (SRCNet)

software architecture.

This description covers the use cases to be implemented on the SRCNet, the common modules needed

for the SRC blueprint implementation, the interfaces between these modules and other SRCNet nodes

and the constraints on the implementation. That involves

- Classification of use case types and actors.

- Logical view of the modules and decomposition in submodules of the SRCNet.

- UML diagrams including class diagrams.

- Dynamic aspects of the system, explains the system processes and how they communicate and

focused on the run-time behaviour of the system. The process view addresses concurrency,

distribution, integrator, performance, scalability, etc.

- UML diagrams to represent the process view include the sequence diagram, communication

diagram and activity diagram.

This document does not cover the following items (among others):

- Full compilation of Use Cases from the scientific community.

- Operations Plan for the SRCNet.

- Software Stack to be used for the SRCNet implementation.

- Deployment Plan of the SRCNet nodes.

- Detailed ICD descriptions (e.g. SDP-SRCNet interface).

Due to the development status of the different elements, it would require further updates and review on

future versions.

1.2 Overview

Present document is organized as follows:

- Needs of the SRCNet deployment
- Use Cases to guide the architecture design

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 7 of 91

- Architectural Representation

1.3 The SKA Regional Centres Network

The operating environment of the SRCNet Software is presented in Figure 1. SRCNet Software Operating
Context.
The figure describes the most relevant interactions and interfaces:
- SKAO: Interactions on data logistics of data produced by the telescopes.

- As described in section 1.3.1 The Square Kilometer Array Observatory (SKAO)
- SKAO Global HeadQuarters: Global and operations coordination and proposals information.

- As described in section 1.3.2 SKAO Global HeadQuarters
- Science Users: Interactions of the scientific community with the SRCNet platform.

- As described in section 1.3.3 Science Users
- SRCNet Site Developers: Development teams composed of members of the SRC Sites, coordinated

to create the relevant SRCNet software modules.
- As described in section 1.3.4 SRCNet Site Developers

- Multi-Wavelength and Multi Messenger Facilities: Implementation of standards to allow science
use cases that imply data from different missions and observatories.

- As described in section 1.3.5 Multi-Wavelength and Multi Messenger Facilities
- SRC Nodes: The SRCNet will be composed of SRCNet nodes. These SRCNet nodes are software

instances that will communicate between them using agreed federated protocols and creating a
distributed science platform. SRCNet nodes are the basic element of the SRCNet and its
architecture is described in the present document.

- SRC Sites: The SRCNet nodes will be running in SRC Sites. These SRC sites are physical locations,
usually data centres, distributed within the SRC country members.

- As described in section 1.3.6 SRC SItes
- SRCNet Operations Group: Team in charge of the operations of the SRCNet nodes, maintenance

and monitoring.
- As described in section 1.3.7 SRCNet Operations Group

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 8 of 91

https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#bookmark=kix.tzuxqtjxfmrp
https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#bookmark=kix.tzuxqtjxfmrp
/h.9yxbj9gv1176
/h.2e7jononiqvb
/h.8trneo3gky8k
/h.ej94f6q3dc2g
/h.5wionepk33fd
/h.1qnncpt9yxns
/h.4h5v6in35oo

Figure 1. SRCNet Software Operating Context
Software Operating Context of the SRCNet, describes the interfaces to Science Users, external facilities, SRC Sites,
SKAO project, development teams and operations team.

1.3.1 The Square Kilometer Array Observatory (SKAO)

The SKA Observatory is a next-generation radio astronomy facility that will help to revolutionise our

understanding of the Universe and the laws of fundamental physics. The observatory has three

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 9 of 91

locations: in South Africa's Karoo region (SKA_MID), Western Australia's Murchison Shire (SKA_LOW) and

the Global Headquarters in the United Kingdom. The SKA_MID and SKA_LOW locations will be capable

of producing a stream of science data products on the order of 700 PB/year. This large data volume is

unprecedented for the astronomical community and thus poses unique challenges for curating and

providing access to the datasets and resources required to analyse them in order to derive the final

scientific insights. The approach chosen is the development and adoption of the SKA regional centre

concept in the form of a loose SRCNet association consisting of, presently regionally funded, regional

activities overseen by an SRC Steering Committee. The justification for the establishment of regional

centres is mainly driven by the needs of survey science teams and individual scientists to derive scientific

insights from the data products produced by the SKAO (hereafter referred to as Observatory Data
Products, ODPs). The very high-level functions required to operate an observatory and derive the

anticipated scientific insights are shown in Figure 2. The ObsProject Lifecycle (Quinn et al. 2015). The

whole Observatory Proposal lifecycle is segmented into four quadrants. In clockwise order, these are the

Proposal Domain, the Observatory Domain, the Processing Domain and the Science Domain. The first

two cover the proposal and observation phases while the latter two cover the data processing and

research stages. Although these domains overlap, they still delineate distinct activities, which can be

assigned to different sub-systems and groups of people, some of which are inside the SRCNet Software

system.

The SRCNet Software system will provide a scientific data repository for this data using the storage

resources available from the SRC Sites (see 1.3.6 SRC SItes). The data rate flow from the telescopes to

the SRCNet can be summarised as follows:

- SKA_LOW will produce around 2 Pb/s which will be reduced to around 7-8 Tb/s that will be

redirected to the Central Signal Processors.

- SKA_MID will produce around 20 Tb/s that will be redirected to the Central Signal Processors.

- Both Central Signal Processors will produce a combined bandwidth of around 560 GB/s that will

be redirected to the Science Data Processor (SDP) for processing.

- The SDP will produce around 700 PB/year, including resilience overheads, that will be distributed

to the SRCNet nodes.

All of these data will be distributed into several SRC Sites. SRC Sites will provide access to the SKA data as

well as computing resources necessary to fully exploit their science potential.

In order to reduce the initial data volume to a manageable amount, it has been decided that the SKAO

would process the data to a significantly higher degree than is typical for current radio facilities. For

radio astronomy data that means multi-dimensional Data Cubes, Catalogues and a number of more

specialised products for specific science projects. The SDP workflows are developed and executed in a

very controlled environment using carefully tuned settings, to satisfy a broad range of science goals, with

limited adjustability required by the users.

The list of expected OLDPs is identified at (Breen, Bolton, and Chrysostomou 2021).

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 10 of 91

/kix.felsm3t79ej1
/h.1qnncpt9yxns

Figure 2. The ObsProject Lifecycle
It starts with scientists preparing Observing Proposals, which will then be turned into actual Observing Projects
utilising the Proposal Handling process. The set of accepted Observing Projects is then turned into a Schedule which is
then executed to carry out astronomical observations which results in Raw Data also termed as UV Data. In radio
astronomy, this is a multi-staged, quite complex process, even to just arrive at the UV Data indicated in the figure. It
is followed by some processing, also to be able to decide whether the collected raw data meets certain basic criteria
(QA1). In order to reduce the initial data volume to a manageable amount, it has been decided that the observatory
would go further and process the data to a significantly higher degree. For radio astronomy data that means in
general multi-dimensional Data Cubes, Catalogues and a number of more specialised products for specific science
projects. Again, to assess the quality of those products and thus the success of the whole observation there is a
second quality assessment (QA2) built-in. After that typically all observations belonging to a certain Observing
Project (unless there is further processing to generate project-level data products) will be collected, packaged and
released. The released Data Package(s) can then be picked up by the science teams and further analysis. This step
constitutes the actual Research activities and results in Advanced Data Products and Scientific Papers. Very often
these results lead to follow-up Observing Proposals and thus closes the cycle.

Users of the SKA telescopes be able to apply for time and resources under three project types: Key

Science Projects (KSPs), Principle Investigator (PI) Projects and Director General’s Discretionary Time (DDT)

proposals. KSPs are expected to require significant observing time and resources and may make up as

much as 70% of the observing schedule in full operations, putting their requirements at the forefront.

The SDP will produce Observation-level data products (OLDPs) following the conclusion of each
observation and queue them for delivery to the SRCNet once QA has been passed. In many cases, the

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 11 of 91

scientific user will have requested Observatory Data Products that are the combination of a number of
OLDPs, called Project-level data products (PLDPs). While these PLDPs will likely be created within the
SRCNet Software System, the pipelines to produce them, including the provision of associated provenance
and QA information, remain the responsibility of SKAO. Both OLDPs and PLDPs will have passed rigorous
QA before they are released to the proposers, removing the SRCNet Software system from a time-critical
processing and decision loop since the quality assessment processing and final approval will completely
reside within the SKAO. Any re-scheduling of observations (yellow arrows in Figure 3. Extension of Fig.2)
due to insufficient quality would then also be at the discretion of the observatory.

Figure 3. Extension of Fig.2
including the various levels of data reduction as well as the generic and abstract SKA Processing & Persistence
Services. These services also include the actual processing frameworks, workflows and algorithms as well as the SKA
Science Archive. The term Persistence Services is chosen here to indicate that there is quite a bit more required for the
overall SKA than just the Science Archive to ensure that the data is managed and curated appropriately throughout
the lifecycle and indeed over the lifetime of the observatory and potentially beyond. The Level 1-4 data products are
labelled transient, which means they won’t be stored longer term. The Level 5 and Level 6 data products essentially
are the Observatory Data Products (ODPs), where Level 5 is before the final quality assessment and Level 6 is after.
This is a critical distinction since the only ODPs worthwhile keeping long-term and further analysing are the Level 6
ones. Level 7 products are derived products, often involving data from other observatories or experiments as well as
scientific papers and other associated products.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 12 of 91

https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#bookmark=kix.gghla99uai18

The SKAO coordinates the detailed proposal selection, preparation, execution of the observations, initial
calibration and generation of the ODPs adhering to a pre-defined quality. After that, the SRCNet Software
system takes over again and supports all the additional processing required to produce the ADPs.

Both the ODPs and the ADPs will need to be curated and maintained by the SRCNet in a FAIR (findable,
accessible, interoperable, and reusable) and secure way.

After QA2 the SRCNet Software will collect, pack together, and release all observations belonging to a

certain Observing Project, along with applicable calibration and auxiliary data and logs. This packaging is

performed by the SRCNet System software.

The interface with the SKAO is described in the following reference document (Diamond and Quinn
2020).

1.3.2 SKAO Global HeadQuarters

The Global HeadQuarters (GHQ) is the third SKA site. For the interface to this site, the SRCNet Software

System will implement the governance policies according to the technical oversight of the Global

HeadQuarters.

The GHQ coordinates the detailed proposal selection and preparation and execution of the observation.

The SRCNet will have some responsibilities to support users in the preparation of proposals (Proposal

Domain in Fig 3) and likely also in the proposal review process as well as user support during the

execution of a project.

The Level 1-4 data products are labelled transient, which means the SRCNet Software System will not

store them long-term. The Level 5 and Level 6 data products essentially are the Observatory Data

Products (ODPs), where Level 5 is before the final quality assessment and Level 6 is after. The SRCNet

Software System will keep the Level 6 OLDPs and the Level 7 ADPs long-term (reference for Level 1-7

descriptions here), in accordance with the GHQ data archive policies in this applicable document

(reference TBD).

The governance interfaces with the GHQ are described in this reference document (Diamond and Quinn
2020).

1.3.3 Science Users

The SRCNet Software System will provide, in collaboration with the SKAO, science user support across

the entire Observing Project lifecycle as described in Figure 3. Extension of Fig.2, from initial discussions

around the capabilities and limitations of the SKA telescopes to the final delivery and curation of the

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 13 of 91

https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#bookmark=kix.gghla99uai18

ADPs. This means that the SRCNet will share some responsibilities in the Proposal Domain as well as in

the Processing Domain.

The SRCNet Software System will enable and support scientists and science teams to analyse the ODPs
delivered by the SKAO. Some of the methods and workflows envisioned to perform this analysis will be
novel, or at least non-standard and will require significant effort to make them applicable to SKA-scale
data analysis. Meeting this challenge requires a far tighter collaboration between the technical experts,
the software developers and the scientists than is typically necessary. In order to first enable an analysis
of what that scale is and what the actual challenges are, we can draw on work done in the past. (Quinn,
2015) already presented an initial insight into the expected data rates and volumes for a whole set of
Key Science Projects (KSPs).

The SRCNet Software system workflows will provide a flexible setup, allowing scientists to develop their
own workflows and components and also provide some experimentation capability.

The SRCNet Software System will release Data Package(s) that can then be picked up by the science

teams for further analysis.

The interface with Science Users is described in Sections 5.2.1 Presentation Tier and 5.2.2 Application
Tier API of this document.

1.3.4 SRCNet Site Developers

The SRCNet Software System will assist the SRC Sites in providing access to the software that implements

the science use cases of the community, including those of the large surveys. The SRCNet Software

system will provide these projects with two things:

● a generic infrastructure and environment capable of handling SKA-scale data and processing rates
and volumes and

● dedicated support for each of the KSPs, but in particular the extremely large ones.

SRCNet Site Developers will provide specific science analysis capabilities, software and tools, required to
achieve the science goals set out by each of those projects to the SRCNet Software system. In order to
support such a multitude of different scientific reduction workflows on large-scale computing platforms
and involving TB and PB size datasets requires an emphasis on the way workflows and their algorithmic
components are developed and maintained.

The SRCNet Software will provide access to a federated development, testing, and execution
environment for these analysis tools and software.

In addition, a close collaboration with the SKA Science Working Groups will be needed to ensure that the
use cases and requirements, and thus the analysis tools and software being developed, are kept up to
date with the ambitions and plans of the science community.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 14 of 91

https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#heading=h.jj37viiuas86
https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#heading=h.m3v60n6qdayt
https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#heading=h.m3v60n6qdayt

The SRCNet will facilitate the addition and removal of SRCNet Site Developers, as funding might come

and go and the availability of SRCNet Site Developers dedicated to SRCNet Software system activities

can’t be assured.

The SRCNet Software system implementation is a common effort that implies the creation of SRCNet Site

Developers distributed all across the planet and the creation of synchronised development cycles.

Development resources will be provided by the different SRCNet partners and they will work in

coordination to develop all needed components of the SRCNet Software system. It is expected to provide

a gradual increment of functionality and capacity until being fully functional and with full capacity for

the SKA assembly AA* (Salgado 2023).

The interface with SRC Site Developers is described in the reference document (Diamond and Quinn
2020).

1.3.5 Multi-Wavelength and Multi Messenger Facilities

The SRCNet Software System will support Science Users with the merging of the SKAO data and data
from other wavelengths to assist in the production of scientific insights.

Modern astronomy is multi-wavelength and multi-messenger (MM, hereafter) and thus the vast majority
of the SKA science projects will require the usage of data from other facilities. In fact, synergies between
the major planned and operational facilities have been established already and are being actively
explored (e.g. Euclid , Vera Rubin , LIGO , ESO ELT , JWST , NGVLA). For some science projects the SKA1 2 3 4 5 6

data is the add-on, rather than the driver and some of the SRCNet nodes will potentially may even host
data for multiple of these facilities as service providers. Such MM science projects typically have a very
high impact and provide unique insights into the physical properties of the studied astronomical
phenomenon. Performing such research adds a lot of complexity to the SRCNet in the sense that
multiple of these data sets have to be understood and merged, but there might also be a competing
demand by MM studies with other facilities. On the more technical side supporting MM projects
essentially makes the usage of IVOA protocols and standards mandatory. Some of these MM projects

6 https://ngvla.nrao.edu/

5 https://webb.nasa.gov/

4 https://elt.eso.org/

3 https://www.ligo.caltech.edu/

2 https://www.lsst.org/

1 https://www.cosmos.esa.int/web/euclid

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 15 of 91

https://ngvla.nrao.edu/
https://webb.nasa.gov/
https://elt.eso.org/
https://www.ligo.caltech.edu/
https://www.lsst.org/
https://www.cosmos.esa.int/web/euclid

(e.g. GW and GRB follow-ups) will require quick turn-around times and thus resources need to be made
available on short notice by the SRCNet.

For some of the transient MM projects, the SRCNet Software system will need to support quick follow-up
observations on the SKA telescopes, associated with the required data reduction to derive results in a
timely manner. General priorisation plan of data processing tasks will be defined in the operations plan
and it will require a case by case study.

Some of the interfaces with Multi-Wavelength and Multi-Messenger Facilities are described in the
documents (Dowler et al. 2019) (Louys et al. 2017) (Salgado and Ibarra 2021) (Allan, Denny, and
Swinbank 2017).

1.3.6 SRC Sites

The SRCNet Software System will provide the software to federate the regional and community sites into

a working, usable and maintainable SRCNetwork.

The SRCNet Sites are completely independent entities, each with its own funding cycles, local

government policies and additional responsibilities not related to the SKA. Funding might be granted

only in the context of a bigger, local endeavour and thus there is a likelihood of strings attached to it.

Funding might come and go, therefore the SRCNet Software system will support the addition and

removal of SRCNet Sites.

Another point of critical concern is about the scale of the required resources to support the activities of
the science teams and later also the broader community to further analyse the archival data. Typically
the teams around a large KSP will consist of ~100 scientists. A single KSP will have one or a few main
science drivers which are covered by the discussion in 1.3.3.1. However, the interests of each of the
involved scientists, driven by the necessity to produce first-author papers as well as the mere potential of
the data at hand, are far more diverse than that. It can thus be assumed that there will be at least ~50
additional science projects proposed by the core science teams. Once open to the broader community,
there could potentially be hundreds more. In order to achieve the main objective of the SRCNet to
maximise scientific output and impact, the architecture needs to embrace this diversity and try to
support as many high-quality science projects as possible while avoiding duplication across the science
projects to the maximum extent possible.

As the sole curator of the exabyte-scale SKA Science Archive, the SRCNet Software system will require an
additional (or expanded) proposal and review system for science projects solely based on archival data.
Given the rough estimates above this will mean that several hundreds of science projects will compete
for resources on the SRC sites, in addition to the, relatively few, main science projects being observed at
any given point in time.

The SRCNet Software system will select and distribute these projects within the SRC Sites. The SRCNet
Software system will schedule the load and the relative priority of each of them. The SRCNet Software
system will provide tools and systems to support decision-making with a far broader scope than the

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 16 of 91

SKAO. In the most extreme cases, the SRCNet Software system will prioritise a high-impact, very
demanding archival project over a newly proposed observational KSP at any number of SRC Sites.

Some of the interfaces with SRC Sites are described in 5.3.2.1 Data Management Service, 5.3.2.2
Metadata Management Service, 6.7. Computational resources allocation and federated execution
sections of this document and in (Diamond and Quinn 2020).

1.3.7 SRCNet Operations Group

The SRCNet Software system will make use of dedicated support personnel assigned to them.

The interface with SRC Sites is described in the reference documents (SKAO 2020), (Diamond and Quinn
2020)

1.4 Federation Considerations

1.4.1 The SRCNet data lake and the SRCNet nodes

Generally, data lakes (Gorelik 2019) are centralised repositories designed to store, process, and secure

large amounts of structured, semi-structured, and unstructured data. It can store data in its native

format and process any variety of it.

However, the SRCNet repository will be centrally managed but distributed and federated at the storage

elements level. So two challenges should be addressed:

- Data exploitation of the data lake: Although data lakes provide full access to data for analysis to

the users, exploitation of data lakes is complex as the computation is not integrated into the data.

The SRCNet should include big data lakes exploitation techniques. Generally speaking, a data lake

is a storage repository that contains a vast amount of data, at different levels of processing, that

requires integrated analysis applications for general processing, including classical ETL (Extract,

Transformation, Load) but, also, more advanced analysis techniques.

- Data Latency due to distributed repositories: Although some use cases would require a

preliminary movement of the data to start the analysis, methods should be provided to execute

remote operations on the data to minimise data transfers whenever possible.

As a consequence of this distributed computing, the SRCNet will not be composed only of the data lake

but, also, of computing nodes to process these data. For the optimal consumption and analysis of the

SKA data, the nodes should be able to share executable code and they should be able to share network

topology metadata (available resources, network connectivity, occupancy, etc).

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 17 of 91

https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#heading=h.96y6rhl2scsj
https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#heading=h.ill3d7jq89ja
https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#heading=h.ill3d7jq89ja
https://docs.google.com/document/d/1SCq1p3FsEKol8y5pbd2XgWxwIS0eGulMkenCPE7oi5k/edit#heading=h.w9wo8x44vrjt

1.4.2 The SRCNet and the SRCNet nodes architecture

The present document describes the architecture of the SRC nodes and the SRCNet to allow access to

the scientific community to the SKA science data. The modules and interfaces described in this

document allow different levels of implementation:

- Basic blueprint: A basic blueprint is an architecture software design that allows proper

communication of the SRC nodes and similar access and usage of the SKA data into the SRCNet.

The SRCNet should produce an implementation of the modules described in the Architecture

blueprint. A basic SRC node would be a deployment of these reference implementation modules

at their local SRC.

- Replacement by a different API implementation: Due to local constraints or technical reasons, the

reference implementation could be substituted by a different implementation for some of the

modules. This is particularly relevant for the resources layer modules as local infrastructure could

vary. In all cases, these alternative implementations should preserve the API agreed upon for the

module, so the rest of the SRC elements could be integrated without changes.

- Extension of components: Components could be extended in functionality by adding extra

features. In this case, the new implementation should be backwards compatible with the basic API

described for the architectural blueprint of this module so the new interface should be an

extension of the basic one. Other modules that only understand the basic interface should be able

to be interconnected to the new component implementation without changes, although not

being able to use the extended functionality.

This architectural blueprint for an SRCNet node follows a federated model and it is being defined to

facilitate compliance with the FAIR principles (findability, accessibility, interoperability, and reusability)

and the use of IVOA standards whenever applicable. Implementation of these principles and the use of

standards allow data exploitation using already existing clients or newly created ones using documented

APIs. In this way, the scientific community would be able to connect to any SRC to access SKA data and

run analysis tools in the most straightforward possible way, simplifying the technical complexities of

using SRCNet services for the scientists and maximising scientific data exploitation.

The blueprint will specify tools to discover SKA data, computing resources, interoperability services,

visualisation tools, science-enabling applications, and common SKAO SRCNet support to the scientific

community in the form of helpdesk support, training, and project impact dissemination. All SRC nodes

will share a common data logistics management system that will manage data distribution, minimise

unnecessary duplication, share data following availability criteria, and identify popular data sets to

create copies for fast access. Also, all the SRC nodes of the SRCNet will be connected between them

using federated services for, among others, a common authentication/authorisation system, federated

data access, federated execution, global monitoring and events system, etc.

These considerations indicate a need for a paradigm for managing and deploying the federated services

across distinct, heterogenous SRC nodes. The Service Mesh paradigm is important to consider in this

respect. At its very core, it provides secure service to service communication and Layer 5 management.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 18 of 91

This can mean providing service level orchestration and management on top of containerised services,

such as those running in Kubernetes, and also traditional non-containerised VM-based services. Service

meshes can allow for API-based management of distributed core SRC services, including monitoring,

version management, cross-compatibility of these services and traffic control among the distributed

instances of running services. This will grant the SRCNet load-balanced and fault-tolerant core services

running across the nodes. Support for different types of service implementations will allow for SRC node

variety (in terms of resources available, how resources can be provisioned, person power available and

local skillsets) while enforcing the respective Service Level Objectives (SLOs).

Figure 4. SRCNet node blueprint conceptual representation.
All the SRC blueprint implementations, the data lake, and the protocols involved will compose the SRCNetwork or
SRCNet.

However, it is foreseen that this common SRC blueprint can be extended by increasing the capabilities of

one particular area or by specialisation in domains. This would allow the creation of expert groups,

probably defined by data or science domains, disseminated across the SRCNet to provide better support

and more scientific results for the community.

2. Architectural Representation

The software architecture representation will be done following the “4+1 architecture view model”7

The “4+1 architecture view model” (see Figure 2 Software Architecture: The "4+1 View"…) illustrates

five uniquely viewed perspectives in the design of the architecture: Use-Case, Logical, Process,

Deployment, and Implementation views.

7 https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 19 of 91

/id.y1m46hdqb8yf
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf

The logical architectural representation of the SRCNet architecture will be composed of a Logical View, a

detailed modules view representation showing submodules and interrelations, and a detailed module

decomposition whenever appropriate.

As the development of the SRCNet is still under design at this stage, the current document architecture

representation will be done through a Conceptual Architecture View. That implies that although the

modules and the interrelationships between them will be sketched, many of the implementation details

will be only present in future versions of the architecture.

The Use-Case View describes functional and non-functional significant system L1 requirements. Use

cases are used to generate a consistent set of requirements and to constitute the glue that unifies all the

other views.

The present document will cover the following aspects of the 4+1 View:

● Logical view

● Process view

Use Cases (Scenarios) will be covered in a separate reference. The development view and the Physical

view will be described in the future Implementation plan.

Figure 5. Software Architecture: The "4+1 View" Model.

3. Architectural Goals and Constraints

There are many factors that imply a complex design and implementation of the SRCNet.

The large data volume to be shared and analysed, data distribution into a federated

multi-national/multi-continent network, complexity of the algorithms required by the world wide

scientific community for proper data analysis coupled with the need to provide distributed

intercontinental computational resources make the SRCNet one of the most complex software entities

within the context of scientific data processing.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 20 of 91

Several groups all across the planet will contribute implementing this complex distributed platform, with

different budgets, expertise and internal organisational rules. Also, different groups of experts on the

development of science data platforms and analysis workflows across the network will need to agree on

software elements' design decisions, some of which are controversial. Due to this federated pledging

approach, consensus could be difficult to reach dealing with different national interests.

This is why a decalogue of rules would help to guide the design and future implementation decisions.

These rules would help to obtain the best possible SRCNet software entity in the world.

1. The main objective of the SRCNet is to maximise the science produced by the community using

SKA data

The definition of the SRCNet Architecture should be developed in coordination between the scientific

and engineering communities to ensure that the design allows producing valuable science from the SKA

data.

The measure of the maximisation of the science produced using the SRCNet would be regularly

monitored by SKAO using metrics that could include among others:

- Metrics that combine the number of publications produced by the scientific community using the

SRCNet and its combined impact.

- Number of use cases implementable using SRCNet components.

- Percentage of the SKA data linked to publications.

- Performance metrics related to scientific productivity.

- Surveys.

Combined metrics will be provided in a verifiable way and comparable among facilities.

The primary goal of maximising the science produced within the SRCNet should be to accommodate the

approved science programme, and, in a second level of priority, to allow the execution of science use

cases for multi-mission, public data or other kind of scientific studies. In case of conflicting decisions, the

primary goal takes preference.

2. The SRCNet development is a global effort done by all the SRCs

SRCNet is being created by and for the SRCs to ensure a global discovery, access and execution system.

SRCs are software providers and consumers. The effort provided by the SRCs, national funders and

partners on the development must be properly acknowledged to success on the global effort.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 21 of 91

3. The SRCNet architecture should be scalable

SRCNet architecture should allow adding new resources to the net to scale its capacity. This should be

allowed in two ways. Locally, nodes should be scalable to new resources. Globally, the SRCNet should

allow adding new nodes and SRC partners.

4. The SRCNet architecture should be extensible

Architecture should allow SRCNet nodes capabilities extension. SRCNet node basic capabilities could be

extended while remaining backwards compatible. Also, the SRCNet architecture should be able to react

and adapt to future changes.

5. The SRCNet architecture should provide data and Computing Resilience

SRCNet architecture should prevent the unavailability of data access and computing resources due to

the failure or unscheduled maintenance of a particular node. Also, the nodes should be designed so that

disruptions are minimised.

All SRCNet nodes should comply with an agreed set of basic capabilities, which implies a Multi-Region

Architecture. Users should be able to transparently access these services. This architecture will maintain

high availability in case of regional failover.

6. The SRCNet architecture should follow FAIR principles

SRCNet components should follow FAIR (Findable, Accessible, Interoperable, Reusable) principles

whenever applicable. The use of these principles makes digital objects more valuable as they are easier

to find through unique identifiers and easier to combine and integrate thanks to the formal shared

knowledge representation.

7. The SRCNet Architecture should be designed to minimise cost and environmental impact and

maximising throughput

Due to the distributed nature of the SRCNet data lake, the architecture should allow for the "moving

code to the data" paradigm as the input data for scientific data reduction pipelines is often larger in

volume than the code (including in some cases the operating environment) to run these pipelines.

Latency produced by the movement of big amounts of data to an execution SRCNet node from a remote

SRC, even using temporary copies, should be prevented as much as possible for big datasets. Also, the

creation of temporary copies of big datasets would increase the cost of the whole SRCNet in terms of

storage and network use.

While the location of the largest input datasets is one of the main criteria to decide on which SRC node

the pipeline will be executed, there might be scenarios where moving the data to a different node may

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 22 of 91

be more efficient (e.g. when the node hosting the input dataset has not enough resources to allocate

the pipeline execution). The architecture should also allow the transfer of input data in case of those

scenarios. Also, the architecture should allow the transfer of intermediate and final products of

workflow execution across nodes for this kind of pipelines.

In general, the SRCNet Architecture should contain optimisation algorithms to suggest the best possible

execution plan for the different pipeline types.

8. The SRCNet architecture should allow federated execution

Jobs could be executed in any SRCNet node, regardless of where the user submitted them. By default,

the execution node would be automatically assigned by the SRCNet code based on data and computing

resource availability, meaning that there should be enough FLOPs available to process the data
stored locally in the online archive (at within an acceptable amount of time defined by the
non-functional requirements.

To perform this task, a global accounting and monitoring system (that should include, at least, personal

storage for user and groups, computing resources used, configurable quotas per users and groups

(storage and computing), etc) is needed to track the resources used by the SRCNet users either in local

SRCs or globally. Policies on accounting are to be defined and agreed upon.

9. The SRCNet architecture should allow reproducibiblity of the execution of analysis workflows

Due to the size and complexity of execution of the SKA data-analysis flow, the workflows should be

reproducible into the SRCNet. That means, workflows should be serialised in a documented format that

includes all the different needed dependencies like input data, execution parameters, software versions,

etc. SRCNet implementation should allow replicability (reproduction of executions with identical results)

and reproducibility (possibility to execute with varying parameters).

10. The SRCNet architecture should ensure Data Integrity

The SRCNet should ensure the curation of the project digital objects (SKA pipeline data, official software

entities, etc) to maintain their value throughout their lifecycle of interest and usefulness and the

preservation of these digital objects within the net for as long as required.

11. The SRCNet architecture should be secure

The SRCNet should be designed to be secure in terms of authorisation access rights, use of compute

resources, user information and prevention of execution of malicious software. Also, coordinated

security rules should be placed for the SRCNet nodes.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 23 of 91

12. The SRCNet architecture should minimise the environmental impact

The SRCNet should be designed to minimise the enviromental impact on the operations, including

efficient use of the resources. A correct balance between the environment impact reduction and the

reduction of operational costs should be obtained.

Requirements associated to architecture principles are identified in Appendix 1

4. Use-Case View

A set of documents with the list of use cases is provided by the Science Engagement group on the

expected features that the SRCNet would need to implement. The first one is a list of general use cases

(Clarke et al.) and the second is a list of visualisation use cases (Franzen et al.). Using this list, the

identification of actors and classification of Use Cases will be extracted.

4.1. Actors

By the analysis of the provided Use Cases, we can extrapolate a coarse-grained classification of the roles

involved in different use cases.

Role Description

Developer Someone who is developing any of the SRCNet components to provide

science platform services or infrastructure handling.

Scientist Someone who is making use of the SRCNet tools and services to search or

analyse data.

Operator Someone who is in charge of deploying and maintaining services, handling

incident logs and performing troubleshooting on one or more SRCNet

components.

This coarse grain representation can be decomposed on more detailed roles described in the Appendix

2: Actors fine-grained classification

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 24 of 91

/h.1sqix8fz9zd
/h.1sqix8fz9zd

4.2 Use Cases Classification

Although all the use cases present in the documents are quite different, an inspection of them allows

classification in terms of analysis, discovery, visualisation and operations areas. These ambits are

described as follows:

Use Case Type Primary
Actor

Supporting
Actors

Description Needed Software
elements basic
decomposition

Access and/or
Retrieval Data

Scientist Developer
Operator

A end-user user wants
to access or retrieve
Data, either using a
graphical user interface
or a scripting interface

Modules to ensure
access policy and data
transfer to be
implemented

Monitoring and
accounting tasks by
Operators tools

Science Archive
Data discovery service
Data access service
Databases
Repositories
Authentication
Authorisation
User Interface/command
line interface

Interactive Data
Analysis

Scientist Developer
Operator

A final user wants to
define and execute an
algorithm on an
interface using an
interactive interface and
obtaining results on the
different steps
This interactive
algorithm could be
converted into an
non-interactive one for
batch processing

Science Archive
Interactive interface
Authentication
Authorisation
Computing allocation
Execution framework
Software workflows
repositories

Algorithm
execution

Scientist Developer
Operator

A final user wants to
execute analysis on
some data, usually
through a scripting
interface

Interactive interface
Authentication
Authorisation
Computing allocation
Execution framework
Software environments

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 25 of 91

Algorithm access and
execution modules need
to be implemented

Federated execution
could be needed if data
to be analysed is remote
and movement of data
is a penalty

Monitoring of resources
and control of the
algorithm execution
operation by Operators

repositories
Workflows management
SRCNet topology

Visualisation Scientist Developer
Operator

A final user wants to
visualise (and, possibly,
take actions on the
visualisation) a certain
data set, usually through
a visualisation tool
interface

Visualisation tools need
to be developed and
maintained

Interfaces to data lake
modules need to be
developed

Server tools if needed,
and processes

Visualisation tools
Visualisation server
modules
Service discovery
Data discovery service
Data access service
Databases
Repositories
Authentication
Authorisation

System
Operations

Operator Developer An operator needs to
perform an operation
into the system, due to
an alert, a maintenance
action or an operational
procedure. Monitoring
tasks by the operations
team usually make use
of specific user
interfaces and

Administrative interface
User/Groups management
Monitoring service
System events system

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 26 of 91

dashboards. Operations
procedures are
performed by invoking
specific command line
scripts

Interfaces and modules
should be developed
and maintained to
perform operations on
the network, locally
and/or remotely

4.3 Assessment of architecture using Use Cases

The SRCNet Architecture will follow an assessment process by using selected scenarios based on use
cases to ensure alignment. One possible approach to be followed is the Architecture Tradeoff Analysis.
The architecture review will provide relevant information to improve the architecture definition and
relevant architecture decisions.

5. Modules View

This section describes the architecturally significant parts of the design model, such as its decomposition

into subsystems and packages, and for each significant package, its decomposition into classes and class

utilities.

Introduce architecturally significant classes and describe their responsibilities and a few important

relationships, operations, and attributes.

5.1. Architecture Overview

Although the SRCNet nodes are complex entities that globally create the SRCNet, every node can be
decomposed following a traditional simple layer structure. Several packages, and groups following a
three-layer architecture, can be identified.

The layers identified and the associated packages are as follows:

- Presentation Layer: User and Communication layer accessed by scientists that would
connect to the SRCNet nodes application layer. This layer is composed, among other
modules, of the User front-end, interactive analysis tools, a system administrator tool,
data visualisation, command-line client libraries, etc. Different secured components of the
presentation layer could be also provided for operators and administrators. These
components could connect to public and private server layer API methods. Due to the

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 27 of 91

international scale of the project, the presentation layer should be implemented following
the “Internationalisation and Localisation” pattern. The number of available languages for
common services should be significant (translations provided by SRC members for their
own local language of the text terms of the application) although the number of possible
languages could be reduced for service extensions.

- Server/Application Layer: Interfaces and modules running on the server side. This would
be composed of a general API (both public and private for administration), an Event Bus, a
monitoring system on the server side to prepare reports, and a set of management
packages to handle data, metadata, provenance, user and group profiles, access rights,
workflow management, and resource management.

- Resource Layer: Collection of resources with stored metadata, data, and procedures. This
is composed of data repositories, databases, workflows (i.e. container images, pipelines,

and code or hooks for fetching the code) and, in this particular case, also by computing
resources available for analysis.

The three-layer architecture allows an easy division of development responsibilities and easier
identification and isolation of problems but also helps to improve the scalability, reliability, and security
of the final product.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 28 of 91

Figure 6. First package decomposition representation of the SRC node blueprint as UML packages.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 29 of 91

5.2. Architecturally Significant Design Packages

As can be seen in the functional decomposition diagram, a set of packages have been identified as

elements that constitute the SRC blueprint. These packages describe all the different layers of a local SRC

instance. These layers have internal connections and, also, connections to other SRCs of the SRCNet.

Figure 7. Condensed SRC node architecture footprint, including layers.

5.2.1 Presentation Tier

The presentation layer package represents a parent package composed of the user entry points to the

SRCNet platform. This would be composed, among others, of a generic User Interface portal, an

interactive analysis system and a system administrator portal. The connection to inner layers is done

through a public (exposing the services functionalities) and a management API (used by the System

Adminitration Portal) that could be used by user layer applications or by clients that directly interact

with it, bypassing the user interface (e.g. using a command-line client or a Virtual Observatory one).

5.2.1.1 User Interface

Package that represents the User Interface portal to the SRCNet platform. A possible implementation

approach would be a Web Portal that would contain, among others:

- An interface to discover, select, analyse and visualise data from the SRCNet.

- An interface to discover capabilities of the SRCNet nodes and the option be redirected to a

selected one.

- An interface to create and run workflows.

- An interface to user and group management.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 30 of 91

- An interface to explore and share files from user/group areas.

- An interface to explore the documentation and the knowledge base.

- An interface to connect to the support/helpdesk.

5.2.1.2 Interactive Analysis

A client application that allows the execution of this analysis on the SRCNet servers. This client

application will use a set of client libraries to interact with the data of the SRCNet (and public data from

other projects using access protocols) and, also, other science analysis libraries of common use. A

traditional implementation could be a notebooks portal where users can invoke different execution

environments and analyse the data resources interactively using a limited set of programming languages

or a more advanced future implementation.

Also, a set of specific libraries and methods to facilitate the exploration of the data should be provided

and can be considered a sub-package of this one.

5.2.1.3 System Administration Portal

A package that is composed of a set of tools to monitor and administrate the SRCNet. These tools are

restricted to be used by the operations team in order to allow them to check the status of the different

elements of the SRCNet and solve possible problems. Also, the portal will allow access to shared

recovery scripts (if applicable) from the software repository, e.g. disaster recovery scripts to restart

failing systems or data recovery scripts to restore backup data. Other recovery scripts could have only a

local scope and they should be handled by the support members of the SRCNet Operations team and

local IT personnel, locally.

If possible, execution of recovery procedures should be enabled through this portal for remote

execution, allowing operators located in different time zones to maintain the SRCNet up and running

24/7 (at least for maintenance tasks that could be executed remotely). The administrator portal will

connect to the SRCNet Management system for most of the actions.

5.2.2 Application Tier API

5.2.2.1 Authentication and Authorisation

Package that contains the modules for the federated authentication system and, also, the authorisation

rules to access data, invoke services, reserve resources, or access personal/group information and data.

The authentication system should use federated protocols that all the SRCs could use and, also, would

allow different identity providers.

The authorisation system should follow the same access rules for all the SRCs and the same security

rules.

Exact API methods will be documented in a separate document. These Interface Control Documents will

describe API signatures and will contain alignment with local government policies.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 31 of 91

5.2.2.2 Public API

Definition of the public server access methods of the SRCNet node and libraries to expose them.

Methods will be exposed through a consistent interface (e.g. RESTful API). This interface could be used

to abstract away the underlying implementation details of an individual node.
This Public API will expose individual SRCNet nodes' functionalities consistently, preventing clients (or

User Interface implementations) from requiring particular technical information about the invoked node.

The common Public API should be implemented by all the SRCNet nodes and it could be extended
locally for extensions.

Exact API descriptions and methods should be documented in separate documents. As changes to the

API impact the compatibility of the nodes, they should be done in a controlled manner, defining

backward compatibility for minor versions and possible non-backwards compatible changes for major

versions.

5.2.2.3 Management API

Definition of the private server access methods of the SRCNet node and libraries to expose them. These

methods, exposed in a similar way to the Public API, would require private access and only would be

invoked by the SRCNet Operations team. That could include, among others, security access, monitor

access, management actions on the SRCNet nodes, User and Group handling, etc

Exact API methods should be documented in a separate document.

5.2.3 Application Tier

5.2.3.1 System Events and Notifications

Events bus system to handle system events and notifications within the SRCNet nodes and, possibly,

between nodes. This event bus approach would allow, e.g. the execution of tasks or communication

between modules using a scalable approach.

5.2.3.2 Monitoring System

Package that includes the system to remotely monitor the behaviour of the different SRCNet nodes and

the SRCNet as a whole. That would include the invoking methods to query for load, resource allocation,

network status, user notifications, energy usage, etc. Also, it would include any needed server module to

provide stats homogeneously and, finally, contain an interface to be used by the Operations team to

inspect the monitoring result, create reports and take actions on the system.

5.2.3.3 Provenance Management

Package that includes provenance metadata tagging and the subpackage to retrieve the information for

the rest of the SRCNet node packages. This provenance metadata would include, e.g. information about

the pipeline used during the data creation, including configuration and execution parameters

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 32 of 91

description, data location, data interconnection, etc. This would be reflected in a format that could be

consumed by engines in the way of Entities, Activities, and Agents.8

5.2.3.4 Data Management

Package composed of the different libraries in charge of the data logistics, including the distribution of

data within the SRCNet, access to the data, replication of data during analysis, etc.

5.2.3.5 Metadata Management

Package composed of the different libraries to access metadata from the SRCNet system. This package

would be composed of database access methods and query languages to access them. Metadata that

could be provided include not only information related to SKA or closer missions like catalogues or

observational metadata but, also, other metadata information relevant to the system like users and

groups information, saved system events and notifications, etc.

Provenance Management System will connect to this system whenever certain metadata needs to be

inserted, updated or queried from a database.

5.2.3.6 User and Group Management

Package responsible for storing, accessing and updating information from the users and groups’ profiles.

This information could be composed of the users' and groups' details and, also, access rights to the data

and other SRCNet resources, the current status of use of the system, quotas, etc.

5.2.3.7 Workflow Management

Package responsible for creating, parsing, storing, and accessing execution workflows compatible with

the SRCNet execution framework (5.2.4.2 Execution Framework) which, either accessing local resources

or other SRCNet nodes’ execution frameworks, will execute them. This module will manage both

user-defined workflows and standard workflows provided by SRCNet partners.

Workflow versions will be also maintained aligned and consistent across the SRCNet thanks to this

module.

5.2.3.8 Resource Management

Package responsible for handling the allocation of resources of the SRCNet including computing,

repositories, update of quotas, etc. Also, resource management would be responsible for the reservation

of resources.

8 Check W3C provenance DM https://www.w3.org/TR/prov-dm/ and IVOA Provenance DM
https://www.ivoa.net/documents/ProvenanceDM/ for further understanding of Entities, Activities and
Agents definition and interrelation.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 33 of 91

/h.7pz8q6fg7dzu
https://www.w3.org/TR/prov-dm/
https://www.ivoa.net/documents/ProvenanceDM/

5.2.4 Resources Tier

5.2.4.1 Databases

Physical databases that contain the metadata of the SRCNet. That could include among others:

- Provenance metadata associated with products

- Scientific metadata associated with products

- Physical location of products

- User metadata and proposals information

- Catalogues and other scientific metadata ingested in databases

- SRCNet topological information like SRCNet nodes storages, services, computing resources,

percentage of usage, node status information, etc.

5.2.4.2 Execution Framework

Module to orchestrate and execute user workflows or any other computing execution needed to analyse

the data into the computing resources available within the SRCNet nodes. The execution framework

allows the use of multiple, heterogeneous compute resources.

5.2.4.3 (Data) Repositories

Physical data layer associated with the SRCNet nodes that contain SKA pipeline products data (ODPs,

ADPs, PLDPs and other possible data products), stored execution entities (software containers), saved

workflows and, in user storage areas, intermediate and output data produced by users data analysis, etc.

5.3 Architecturally Significant Design Packages: 2nd level decomposition

A second decomposition of the design package can be done, including sub-packages and tentative

interactions, view that will be developed later into the use cases architecture assessment and into the

implementation view.

The sub-packages are defined in the next figure

https://confluence.skatelescope.org/display/SRCSC/SRCNet+Modules+View+v0.1

and in section 5.3.1 Sub-Package Descriptions.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 34 of 91

https://confluence.skatelescope.org/display/SRCSC/SRCNet+Modules+View+v0.1
/h.tsl99w9659if

Figure 8. Sub-packages decomposition.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 35 of 91

5.3.1 Sub-Package Descriptions

Next table shows the second decomposition level of the components into sub-packages. These packages
have different scopes:

- Local: Package/service is deployed in the different SRCNet nodes. In most of the cases, an official
implementation is provided and a federated deployment approach is followed to guarantee same
versions running in all the SRCNet nodes (in particular, for security patches). E.g User Interface to
access the Science Platform

- Global: Usually a service that is deployed on a limited number of SRCNet nodes. These deployed
services are providing support to all the SRCNet nodes, usually by a local/partial implementation
that connects to a remote global implementation. Several deployments could be foreseen in the
network to provide high availability or load-balancing capabilities. E.g. Metadata Management
System to prevent the need for database replicated servers on all the SRCNet nodes

- Federated: Pure federated services that are shared by all the SRCNet nodes. All services
contribute to these services. E.g. Data Lake Repositories, Federated computing services, etc

Package Code Element Description Scope

SRC-AP-UI User Interface

1 SRC-UI User Frontend Any functions or

issues related to user
interfaces, such as
GUI, portal(s),
user-end application,
user interaction,
visualisation

Local multiple

deployments in
different SRCNet nodes
to provide similar user
experience

Common functionality,

will be shared as global
modules by all the
SRCNet nodes

1.1 SRC-UI-SA Science alerts

portal

Portal to receive and

visualise
astronomical science
alerts, mainly in
VOEvent format,
from alerts brokers

Local presentation layer

extension only present
in some SRCNet nodes

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 36 of 91

1.2 SRC-UI-DO Documentation

Portal

Web location where

all the different
documentation
resources are
published to the
users like user
guides, SKA products
definition, examples,
etc.

Global documentation

shared by all SRCNet
portals

Possible extended

documentation for
local communities
(including
muti-language
versions)

1.3 SRC-UI-HS Helpdesk and

Support

Helpdesk entry point

for users to ask
questions, report
problems and ask for
support

Possible multiple entry

points but global
underlying
communication
channel

1.4 SRC-UI-AA Authentication

interface

Interface for

federation and
identities.

Global common

service, with possible
multiple entry points
for load-balancing/high
availability

1.5 SRC-UI-CO Collaboration Interface to allow

collaboration actions
like sharing data and
software, creating
groups, managing
user areas, etc.

Local entry points

sharing common client
module connecting to
Global server module

1.6 SRC-UI-UP User Profile Interface to manage

user profile details

Local entry points

sharing common client
module connecting to
Global server module

1.7 SRC-UI-SD Services

Discovery

Interface to discover

software, services,
data releases and
features in different
nodes of the SRCNet

Local entry points

sharing common client
module connecting to
Global server module

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 37 of 91

1.8 SRC-UI-DD Data Discovery Interface to discover

data from the
SRCNet

Local entry points

sharing common client
module connecting to
Global server module

1.9 SRC-UI-MQ Metadata

Query

Interface to discover

science entities,
query catalogues and
perform metadata
queries using direct
SQL/ADQL languages

Local entry points

sharing common client
module connecting to
Global server module

1.10 SRC-UI-WG Workflow GUI Interface to create

and handle
workflows to be sent
to the SRCNet for
execution

Local entry points

sharing common client
module

1.11 SRC-UI-DV Data

Visualisation

Any functions or

issues related to the
visualisation

Local entry points

sharing common client
module

2 SRC-IA Interactive

Analysis

Any functions or

issues related to
interactive data
analysis, tools,
applications,
environments, virtual
notebooks etc. that
bypass the user
interface tools

Local entry points

sharing common client
module

Possible local
extensions

2.1 SRC-IA-CL Interactive

Command-Line
Interface

Library composed by

libraries to access
data, routines and
execution of
processes into the
SRCNet using the
command line. This
is usually written in a
typical scientific
algorithm language

Global libraries

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 38 of 91

(e.g. one or more of
Python, Scala, Java,
etc.) and they can be
executed into an
interactive interface
(e.g. a notebook) or
into a shell script

2.2 SRC-IA-NI Interactive

Interface

User interface,

usually web-based,
that allows scientists
to write and execute
scripts (e.g. a
notebooks
environment)

Local entry points

sharing common client
module to have similar
user experience

2.3 SRC-IA-VO Virtual

Observatory
Interface

Implementation of

IVOA standard
interfaces

Global services. They

can be deployed in
different SRCNet nodes

3 SRC-SA System

Administrator
Portal

Portal, usually

web-based, that
allows SRCNet
administrators to
monitor and receive
health alerts from
the SRCNet. Also, a
portal to modify user
details, computing
and storage quotas
per user/groups,
permissions, etc.

Global portal. It could

be deployed in
different SRCNet nodes

3.1 SRC-SA-UH User Group

Handling

Interface to create

and modify users
and user groups

Global service. It could

be deployed in
different SRCNet nodes

3.2 SRC-SA-RA Resource

Allocation
Client

Interface to modify

resources allocation
per user or group,
including quotas and
permissions

Global service. It could

be deployed in
different SRCNet nodes

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 39 of 91

3.3 SRC-SA-OD Operators

Dashboard

Interface to show the

status of the
different
components of the
SRCNet and specific
SRC metrics. Some
examples are
network status,
resources capacity,
both at repository
and computational
resources point of
view, ingestion
status, etc.

Global service. It could

be deployed in
different SRCNet nodes

3.4 SRC-SA-RG Reports

Generator

Module that allows

the creation of
reports on the status
of the network
during a certain time
scale

Global service. It could

be deployed in
different SRCNet nodes

3.5 SRC-SA-SM Security

Dashboard

Interface to show

security alerts
produced by the
SRCNet nodes. That
would be also
produced by regular
security tests on the
system on possible
vulnerabilities

Global service. It could

be deployed in
different SRCNet nodes

4 SRC-API SRCNet API API to publish all the

possible access
methods to the
SRCNet node. This
API should be
consistent between
the different nodes
and could be
extended by
particular features

Common definition

with local deployment

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 40 of 91

implemented in
specific SRCs

SRC-AP-APIs are used

by the presentation
layer but they should
be designed in a way
that could be also
accessed by scripting
interfaces (bypassing
the presentation
layer) or by other
clients so they would
make use of
standards or they
should be properly
documented.

4.1 SRC-API-PUB SCRNet Public

API

API methods used

directly or indirectly
by users, either by
using tools or the
scripting interface

Common

implementation with
local deployment

4.2 SRC-API-MAN SCRNet

Management
API

Protected API

methods used
directly or indirectly
by administrators

Common

implementation with
local deployment

4.3 SRC-API-AA Authentication

and
Authorisation

API methods to be

used for
Authentication,
Authorisation and
Accounting

Federated service

5 SRC-SE System Events

and
Notifications

Any issues related to

the event-driven
functionality, event
bus, signals,
notifications, events,
event channels,
produces-subscriber

Local module including

federated services

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 41 of 91

model, event
brokers, etc.

5.1 SRC-SE-API System Events

Interface

Interface to

subscribe and
publish events and
notifications to the
SRCNet

Local module

connected to federated
event bus

5.2 SRC-SE-EB Event Bus Federated Event Bus

used by the SRCNet

Federated service

5.3 SRC-SE-PA Events Parser Shared library to

parse and create
Events that can be
imported by
Subscribers and
Publishers

Local module using

common library

5.4 SRC-SE-EP Events

Publisher

Module to handle

event publishers

Local module using

common library

5.5 SRC-SE-ES Events

Subscriber

Module to handle

event subscribers

Local module using

common library

6 SRC-MS Monitoring

System

Module that handles

the monitoring of
the elements of a
particular SRC like
e.g. network,
resources and
services. Send
notifications and
events to the Event
bus to be consumed
by the monitoring
dashboards

Local module using

federated service.
Communication
between nodes of the
monitoring metrics
could be implemented
using centralised or
hierarchical models

7 SRC-MS-IS Information

System

The monitoring

system will update

SRCNet nodes could

have a local client or a

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 42 of 91

the status of the
computing
resources, occupancy
of the different
repositories, network
connectivity
between nodes and
other metrics that, in
combination with
the static
information from the
network, would
produce a
topological view of
the SRCNet in a
particular moment.
This information will
be stored in the
Network Topology
Database and it
would be queryable
through the
information system,
either by the system
administration
portal, the execution
planner or any other
system

global service. Global
service could be
deployed in different
SRCNet nodes and
synchronised between
nodes

7 SRC-MM Metadata

Management

Middleware to parse,

send for execution
and stream results of
metadata queries

SRCNet nodes could

have a local client using
a common module or a
global service. Global
service could be
deployed in different
SRCNet nodes and
synchronised between
nodes

7.1 SRC-MM-API Metadata

Management
API

API access methods

to send queries to
the system and
retrieve results, to be
used by the rest of

Local module using

common
implementation

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 43 of 91

the modules and
preventing direct
access to the
database

7.2 SRC-MM-PR Metadata

Query Parser

Module to parse

received queries,
analyse security of
the queries and
check consistency

Local module using

common
implementation

7.3 SRC-MM-TR Metadata

Query
Translator

Module to translate

queries received in a
certain query
language (e.g. in
ADQL, SQL,..) to an
executable format

Local module using

common
implementation

7.4 SRC-MM-EX Metadata

Query Executor

Module responsible

to send a query for
execution to the
relevant data source
(usually a database)
and usually using a
pooling mechanism

Local module using

common
implementation

8 SRC-PR Provenance

Management

Subsystem to track

and access
provenance
information from
digital objects

SRCNet nodes could

have a local client using
a common module or a
global service. Global
service could be
deployed in different
SRCNet nodes and
synchronised between
nodes

8.1 SRC-PR-API Provenance

Management
API

Interfaces published

to access the
provenance
management
functionality

Local module using

common
implementation

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 44 of 91

8.2 SRC-PR-PA Provenance

Management
Access

Module to handle

the provision of
provenance
metadata to other
modules

Local module using

common
implementation

8.3 SRC-PR-PT Provenance

Tracking

Module to create

and update
provenance
metadata for digital
objects

Local module using

common
implementation

9 SRC-UGM User and Group

Management

Any functions or

issues related to
managing users and
groups

SRCNet nodes could

have a local client using
a common module or a
global service. Global
service could be
deployed in different
SRCNet nodes and
synchronised between
nodes

9.1 SRC-UGM-API User and Group

Management
API

Interfaces published

to access the user
and group
management
functionality

Local module using

common
implementation. It
connects to a local or
global module

9.2 SRC-UGM-UM User

Management

Module to manage

user information

Global module. Global

service could be
deployed in different
SRCNet nodes

9.3 SRC-UGM-GM Group

Management

Module to manage

user groups
information

Global module. Global

service could be
deployed in different
SRCNet nodes

10 SRC-WM Workflow

Management

Subsystem to handle

the creation, analysis
and execution of

SRCNet nodes could

have a local client using
a common module or a

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 45 of 91

scientific and system
workflows

global service. Global
service could be
deployed in different
SRCNet nodes and
synchronised between
nodes

10.1 SRC-WM-API Workflow

Management
API

Interfaces published

to access the
workflow
management
functionality

Local module using

common
implementation. It
connects to a local or
global module

10.2 SRC-WM-WP Workflow

Parser

Module to handle

workflows to check
consistency and
security aspects

Global module. Global

service could be
deployed in different
SRCNet nodes

10.3 SRC-WM-WM Workflow

Mapper

Module to prepare

workflows for
execution, adapting
them to the SRCNet
resources

Global module. Global

service could be
deployed in different
SRCNet nodes

10.4 SRC-WM-EX Workflow

Executor

Module responsible

for sending the
workflow for
execution to the
resource layer,
usually using a
pooling mechanism

Global module. Global

service could be
deployed in different
SRCNet nodes

11 SRC-RM Resource

Management

Any functions or

issues related to the
accounting of
resource usage and
quotes

SRCNet nodes could

have a local client using
a common module or a
global service

Global service could be

deployed in different
SRCNet nodes and
synchronised between
nodes

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 46 of 91

11.1 SRC-RM-RPM Resource

Provision and
Allocation

Module responsible

to identify required
resources for a
certain task, e..g.
workflow execution,
into the SRCNet and
allocating them to
other modules

Global module. Global

service could be
deployed in different
SRCNet nodes

11.2 SRC-RM-RUGA Resource Usage

and Granting

Module to identify a

resource allocation
request and compare
with user/group
quotas, the status of
the SRCNet
resources, security
rules and execution
priorities

Global module. Global

service could be
deployed in different
SRCNet nodes

12 SRC-DM Data

Management

Any functions or

issues related to
managing data,
global data transport
and management,
local data
movements, data
backups and
replications

SRCNet nodes could

have a local module
with the data access
request capabilities or a
global service including
the ingestor.

12.1 SRC-DM-DA Data Access Module responsible

to access digital
objects present into
the SRCNet

Local module

connecting to global
service

12.2 SRC-DM-DI Data Ingestor Module responsible

to ingest digital
objects into the
SRCNet and create
requested copies
across the network

Global service. It could

be deployed in
different SRCNet nodes
for high availability

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 47 of 91

13 SRC-DB Databases Resource layer for

metadata
repositories, usually
in the form of
databases

Global services. It could

be deployed in
different SRCNet nodes
for high availability but
they will require
synchronisation

14 SRC-RE Repositories Resource layer for

data repositories,
usually in the form of
digital objects. This
could be data files,
source code,
workflows and
packaged algorithms
(e.g. in the form of
containers)

Federated service

15 SRC-EF Execution

Framework

Module to

orchestrate and
execute user
workflows or any
other computing
execution needed to
analyse the data into
the computing
resources available
within the SRCNet
nodes. The execution
framework allows
the use of multiple,
heterogeneous
compute resources.
It is instantiated by
the workflow
management system

Federated service to

abstract compute
resources. Different
implementations could
be provided and shared
by the SRCNet for
different technology
flavours

5.3.2 Services View

This section sketches some of the services that will be provided by the different SRCNet nodes. This list
should not be considered exhaustive as new services could be defined and agreed upon. Exact APIs for
these and future services must be defined into agreed ICDs that must contain a proper granularity level in
terms of publication protocols, input parameters, output results, serialisation of objects and flow and it

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 48 of 91

should allow APIs signatures evolution by modification of the existing methods or definition of new ones.
However, it has been considered important to illustrate how the modules are converted into services for a
complete understanding of the architecture.

5.3.2.1 Data Management Service

This service is mainly provided by the deployment of a Data Management system. As mentioned in the
sub-packages table, it is composed of two main services:

- Data Access (SRC-AP-DM-DA): The service in charge of accessing the data, invoking data
replications into staging areas, streaming data from the RSEs, etc. Also, this service could be used
too by data parser libraries (e.g. data mesh server parser libraries as described in Section) to
access data

- Data Ingestor (SRC-AP-DM-DI): The service in charge of the data dissemination within the SRCNet
for data produced by the telescopes and, also, to disseminate data between SRCs. This service
maintains up-to-date metadata information of data locations and ensures that the data is properly
transferred (e.g. by verifying checksums) and that the repositories’ content is consistent (e.g by
identifying orphans files or missing links to the data)

The data management service can have different levels of incarnations. Not all the SRCNet nodes should
implement the data ingestor part (responsible for handling the data dissemination) but all the data
management services should have a data access service (and connect to the data ingestor instances
whenever needed to invoke data replications).

Connection to this service through the SRCNet API will be done by the User Interface and, also, by the use
of command line clients written in common use languages (e.g. python, Java, etc) developed and
maintained by SRCNet development teams.

5.3.2.2 Metadata Management Service

This service is mainly provided by the deployment of a Metadata Management system and allows it to
query content from databases located in the SRCNet and, also, to allow the upload and data tables
creation (using roles control).

For the query side, the following expected queries are expected:
- Discovery of data within the SRCNet data lake by a query for data locations using data identifiers.
- Discovery of science data entities by using scientific data parameters (e.g regions of the sky,

instrumental configurations, etc.).
- Queries on scientific data present in the database (e.g. catalogues).
- Discovery of user and group details and associated access permissions.
- Discovery of SRCNet details (e.g. services running, monitoring alerts and notifications, network

topological aspects, etc).

For the data upload, some main uses are foreseen:

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 49 of 91

- Allow users/groups to upload tables into their personal areas, including control on the sharing
level.

- Allow the data ingestor system to insert and update the data locations database into the
respective database.

- Allow the User Management system to modify content on the User and Groups database.

All SRCNet nodes should implement the metadata query system with different levels of incarnations. A
global implementation should have databases locally accessible and these metadata management
systems should allow query executions, table uploads and table content updates. Others, classified as
local, will just redirect the queries to the global deployed instances. In both cases, the interfaces for the
clients invoking these services should be indistinguishable.

5.3.2.3 Workflow Management Service

As expressed in different parts of this document, the SRCNet will implement different levels of federated
computing approaches. One of them, based on a computing execution service broker, could be used to
abstract the complexities of execution of workflows into a heterogeneous computing resources network
like the ones foreseen for the SRCNet.

This service could be implemented following an interface as follows:
- Workflow serialised document in an agreed format (e.g. Common Workflow Language (CWL) or

similar) is sent to the interface. This document must contain exact descriptions of input
parameters, software elements used (including versions), hardware execution dependencies and
configurations, etc.

- The Workflow Management system will decompose and analyse the workflow and the Execution
Planner would be used to identify an acceptable execution plan using characteristics of the
information of the SRCNet topology extracted from the Information System, location of the data,
hardware dependencies, etc. A more detailed description is present in 6.7. Computational
resources allocation and federated execution

- After decomposition, the Resource Management systems will interoperate and invoke the
executions to their Execution Framework local components.

All SRCNet services should have a workflow management service to coordinate the federated execution.

5.3.2.4 Authentication and Authorisation Service

All SRCNet nodes must have an authentication service entry, either a global service that connects to
federated identity providers or local services implementation connecting to the global SRCNet
authentication declared services.
All SRCNet nodes must integrate consistent authorisation modules to ensure a secure access system
following, e.g. the SKA data access policies.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 50 of 91

/h.w9wo8x44vrjt
/h.w9wo8x44vrjt

5.3.2.5 Services Discovery Service

All SRCNet nodes must declare their running services (common and extensions) using a consistent service
discovery service, providing all the needed metadata to invoke them (e.g. ports, service URLs, service
signature, etc), number of running instances, resources allocated, etc. The information provided by the
SRCNet nodes could be dynamic as new services could be started.

This metadata will be compiled into the information system tables to be used by other components (e.g.
by the execution planner).

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 51 of 91

Figure 9. Services View
View of some of the services implemented by the SRCNet nodes. Four different sets of interfaces are shown:
Authentication interface, Workflow Management interface (to execute workflows and other execution entities into
the node), Data Management interface (to access data and request replications), Metadata Management interface
(to query for data locations, science entities or network services). Data and Metadata Management systems could
be fully implemented (global) or just as a connector to a global service. Federated Execution could be done through
connections between the execution frameworks or through an interface. Federated Data Lake is composed of
Resource Storage Elements available and published to the Data Management System. Shown interfaces could be
expanded with other methods.
https://confluence.skatelescope.org/display/SRCSC/Global+vs+Local

6. Process View
In this section, we sketch some relevant process views of different parts of the SRCNet system. These

descriptions will be as agnostic as possible on the implementation and definition of the software and

technology stacks. Also, some of the processes described could require a more detailed definition in a

dedicated Interface Control Document (ICD) or a detailed implementation document.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 52 of 91

https://confluence.skatelescope.org/display/SRCSC/Global+vs+Local

6.1. Ingestion of data into SRCNet

Science data produced by the two SKA telescopes locations would need to be distributed into the

SRCNet at a comparable rate of the data production. The main reason is, not only, to allow the SKA data

analysis by the scientific community after production as soon as possible but, also, to prevent the

blocking of the operations of the telescopes because the data dissemination interface to the SRCNet is

the operational bottleneck. Both locations will have a storage system with the scientific data result

produced by processing the telescope's raw data. Although this processing will reduce drastically the

amount of data to be distributed into the SRCNet, these local storage systems should be only considered

a temporary data staging area. If these areas are full at a certain moment, this would impact real-time

operations.

Following an agreed procedure, the SRCNet data management system will have access to notifications of

data available for distribution. Once a new data available message is received, the data management

system will identify the final location within the SRCNet or “primary copy”. This location would be one of

the high-read access storage systems or hot tiers (the requirements on the read access rates of the

primary copies could depend on the data type and other factors) provided by the SRCs members of the

SRCNet. To do this distribution, some points, among others, should be considered, for example:

- Resources available for the different SRCs (repositories and computational resources)

- Network connectivity

- Location of programme proposal members that requested the observation (if any)

At least two copies of the data are expected to be distributed to the SRCNet. The “secondary copy” of

the data could be replicated within the SRCNet to prevent data loss or loss of data availability due to, at

least, a problem in one particular SRC (these copies could be located in a not in the optimal read access

storage systems but with enough performance to support online access) or could be generated in hot

tiers to ensure low latency access to popular datasets. Popular datasets will be identified through the

monitoring and accounting of the data access operations. The number of “secondary copies” would

depend on the resources available.

The heuristic algorithm to decide the SRCNet node to be used as the destination of the primary data

distribution would be adjusted during operations through close monitoring of the system resources and

access response, taking into account all the possible elements.

The SRCNet should have different levels of repositories, from hot storage for high-performance analysis

to cold storage for old data or data not used so often during analysis. This is why the SRCNet data lake

storage should follow a Hierarchical Storage Management (HSM) approach, which different storage tier

layers with different performance. Currently, the proposed strategy would be to maintain one year of the

science data products in hot storage (e.g. SSD), the Online Tier, and a cooler technology for older data

(the SDP cost model has assumed a costing based on SATA Hard Disk Drives). However, the selected

model would be discussed during the implementation phase, in a balance between performant science

analysis capabilities and SRCNet partners' budgets.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 53 of 91

Figure 10. Data ingestion from telescopes locations into the SRCNet.
Science Data Processing modules alert of new data available in a staging area using a declared API. The Data
Management module will invoke a replication rule to request a data movement to a certain SRC location. A pooling
mechanism like an event bus implementation (TBD) is used. A daemon is reading the pool and raising data
replication execution from the staging area to one or more repository areas within the SRCNet. After transfer, an
integrity check is done on the transferred data and a data locations database is updated reflecting the existence of
a new data copy.

https://confluence.skatelescope.org/display/SRCSC/Data+Management+Ingest

6.2. Data access during processing SRCNet

There are two basic ways for the modules to access SKA data inside the SRCNet repositories:

- Access to data that are at the same location where the module is located (local SRC)

- Access to data that are in a remote SRC location

For the first case, a direct stream to the digital object representing the data could be obtained. Also,

there exists the possibility to mount directly the storage elements to be visible for the modules as file

storage for some types of data.

However, remote data access is more complicated. One way to convert remote data access analysis to

local data analysis is to invoke the creation of a local copy of the data by producing a data replication

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 54 of 91

rule. This staging data approach is, in the case of very big objects, not optimal because it introduces

latency in the data transfer but it could be used if the data is going to be accessed during a long period

of analysis (preparation of environment) or if the data to be used are not large. This approach is

described in 6.2.1. Data staging approach.

Another way to access remote data for analysis is by the creation of modules that can read and process

remote data copies. Parser modules could perform remote operations on the data and only transfer back

the result of those operations, therefore avoiding potentially costly data movement. This is the “data

mesh” approach that is described in 6.2.2. Data mesh approach.

Data element size, network connection, the kind of operations on the remote data and other aspects

could imply that the “staging approach” or the “data mesh approach” is more optimal, implying that

both approaches need to be implemented and only the analysis of the use case will allow deciding which

approach is more appropriate case by case.

6.2.1. Data staging approach

Once data access is invoked using the SRCNet API, the data management system should, in this order:

- Check data access rights on the relevant digital object

- Discover where this digital object is located in the SRCNet. Usually, several copies could be

present for the same digital object.

- In case a copy of the digital object is located in the local SRC storage close to the computing,

data could be directly streamed to the API.

- A request will be made to the Resource Usage and Granting module to check the user/group's

quotas before making additional copies of the data.

- In case no copy is present in the local SRC storage, a local copy is requested to the Data

Management Ingestor module. This module will raise a replica creation in the target repository. The

replica could have an expiration time stamp so this could be cleaned after a certain time. The idea is not

to saturate the system with these staging copies. A possible reset of the expiration date could be done if

the data is accessed again.

- Notice that this copy will have a registration into the locations database so another request for

the same digital object for this SRC will not produce another data replication during the lifetime of this

staged local copy.

- Once a local copy is generated, the digital copy could be streamed to the API layer.

- All the processes will be monitored and metrics will be produced for the module to create stats

and, e.g. identify popular datasets that could require more copies in the SRCNet.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 55 of 91

/h.6uysiig919ak
/h.jsixs28gh41t

Figure 11. Data access following the “create local copy” approach.
Local copies can be created by invoking the ingestor module if needed.
https://confluence.skatelescope.org/display/SRCSC/Data+Management+Access

Data ingestion and data staging are, in practice, quite similar in the transfer process with the main
difference being the persistence of the data into this storage system and the storage system type. During
data ingestion, the data is flagged as persistent and, in the data staging, data will be flagged as volatile
with an expiration flag that could be adjusted depending on the processing and the computing resources
availability.

All the users should also have dedicated, persistent user storage areas defined by a quota, where they
should be able to upload, store intermediate and final results of processing and share these files with
other users and groups of users. The description of this part will be studied in 6.6. Collaborative
environment.

6.2.2. Data mesh approach

A data streamer could be invoked remotely to perform operations on remote data to prevent data
movement latency. This is usually described as the data mesh paradigm (Dehghani 2022) where data and

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 56 of 91

https://confluence.skatelescope.org/display/SRCSC/Data+Management+Access
/h.cr94402c713w
/h.cr94402c713w

parsing code (including hardware dependencies to execute this code) are considered domain data. This
paradigm is being implemented by many existing data lake services, many of them in the commercial
world, using their implementation flavours.

Figure 12. Data access using the data mesh paradigm.
The Local Data Streamer module connects to a remote Data Streamer located in another SRCNet node. This
connection invokes a remote operation on the data preventing the latency of the movement of the data so only
the result of the operation is transferred from the remote SRCNet node to the local SRCNet node. This could only
be done if the operation is included inside a parsing library runnable on the remote data streamer. In both SRCNet
nodes, access granting and discovery operations are implemented to prevent security breaches.
https://confluence.skatelescope.org/display/SRCSC/Data+Mesh

To properly implement this paradigm, the data products dependencies (parser libraries and hardware),
should be considered on the data dissemination decisions so data should be transferred to nodes where
the computational resources are sufficient to perform these parsing operations.

The data mesh paradigm implementation implies a better integration of the computational resources
and the data lake. Also, the data mesh paradigm creates a direct integration of the data and the related
libraries optimised to perform data operations. These two integration levels are guaranteed by the
creation of data domain experts teams (e.g. experts on a particular data type, a particular data
exploitation use case or a particular science domain) who are in charge of the development and
maintenance of the parsing libraries and specific domain use cases and the hardware dependencies

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 57 of 91

https://confluence.skatelescope.org/display/SRCSC/Data+Mesh

required to execute them. These teams are composed of multi-layer experts, including e.g. data
scientists, data engineers and hardware engineers.

Domain data expert teams are defined to ensure different levels of decentralisation and autonomy:
- Decentralisation of business into domains
- Decentralisation of engineering layers approach into self-autonomous teams
- Decentralisation of monolithic into microservices
- Decentralisation of operations into DevOps teams

Using the libraries produced by the domain data expert teams, other teams can integrate and invoke the
different methods of the API (locally or remotely) without the need of deep knowledge of the logic of
the digital objects structures that are out of their expertise. These libraries can be evolved by the
creation of new methods that are published whenever they are ready for use.

In the case of SKA data, this microservices autonomous approach is particularly important for data
products with complex data parsing challenges (e.g big data cubes) transforming the operations of
parsing and data operations (what could imply data movement latencies and poor performance
methods) into an invocation of services created by the domain data experts that are optimised in
performance and resources and executed on top of optimal hardware infrastructures.

To implement this paradigm, the data discovery resolver module should also contain a parser service
resolver module, indicating not only the location of the data but, also, the existence of a remote parser
library ready to be invoked close to the remote data product.

The data streamer module could require, for higher analysis performance, a staging area where the data
could be stored temporarily during certain analysis tasks. For efficiency, SRCNet nodes should have, at
least, a storage repository where the data could be moved for high-performance I/O throughput, either
during the data dissemination or during the preparation of the analysis environment.

6.2.3. Data staging vs Data mesh

Data staging and data mesh approaches could be used on different use cases or work in coordination.

In the case of big data files (e.g. big data cubes), that could produce a high latency when they need to be
moved to a different SRC, a data mesh approach could be more appropriate. For this case, when the
analysis is done by an execution workflow that could be decomposed and the code distributed to the
SRC where the data is, this approach would prevent unnecessary data movements. This approach could
be done, for example, for visualisation tools where the data parsing server could be moved or located
into all the SRCNet nodes or for operations that could be included in streaming filters close to the origin
of the data.

However, data staging could be used when the libraries that access the data do not implement a
particular data access method required for the analysis or for operations that require the combination of
data from multiple SRCs. For this kind of analysis workflow, a preliminary data environment preparation

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 58 of 91

step is instantiated before executing the data analysis task, moving the required input data to a
temporary area, so the analysis could start with all the data already in the analysis node.

6.3. Science Platform User Interface pattern

The architectural representation separates different layers for every SRC node instance. On the top layer,

a user interface/command line interface is defined that connects to the Server Layer using a common

(for all the SRC nodes) server layer interface. Each SRC Node has minimum functional requirements on

the user interface that could be extended with extra functionality depending on the regional/national

requirements or capabilities.

Federated Execution is a crucial requirement in the design of the SRCNet as scientific workflows may

need to be executed at remote SRCs, i.e. not local to the user, where data are located or where the

requisite resources are available. Therefore, it is crucial that the systems are connected, consistent and

coherent. That implies that some of the minimum functional requirements to be implemented on the

client side should be present in all the SRC nodes so the user experience is similar and, also, to

guarantee the interoperability between nodes that could produce the concept of a global SRCNet.

Also, client components should be portable (e.g. in the form of software containers) and reusable by

other SRCs to minimise the learning curve of the community accessing the network (similar essential

services), provide a coherent view of the system and allow features like federated execution. This also

makes the maintenance of the codebase viable and not dependent on individuals.

Essential services should have the same behaviour for all the different SRCNet nodes. Technically

speaking, a geographical resolve technique (e.g. GeoDNS) could be used to redirect users to the closest

local SRC node so the aspect and functionality should be consistent (although users should be able to

manually select a concrete SRCNet node). This also implies that the deployment of the services should

be done, in many cases, on different SRCNet nodes to guarantee e.g., reduce latency and increase access

performance.

That means that, apart from some obvious functionalities like data discovery, visualisation or the

analysis interface, the SRCNet node architecture should be able to accommodate new functionalities

(extensible) and execute these services with the proper scalability to support not only the local

community but also users from other members of the international community (scalability). This

international agreement would ensure that local community members are also able to execute scientific

workflows also in remote locations, not limiting the science to be produced. More details of the

accounting framework can be found in 5.2.5.2 Execution Framework.

The best candidate for the architecture Presentation tier for the Science Platform Interface is the

so-called Gateway Pattern. In this case, every node declares the services that it is going to expose. This

configuration of services produces three effects:

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 59 of 91

/h.7pz8q6fg7dzu

- User Layer components of declared features are made available in the User Interface. That could

be seen as menu options, clickable icons or any other UX technique that dynamically reflects the

configuration of the node.

- Required component API methods for all declared services are dynamically exposed for this SRC

node.

- Server components to manage API or any other required method are started on the server side.

Usually, to guarantee scalability, these server components are managed by an orchestrator that starts all

the required server components with the required resources of the user, rescaling dynamically the

number of processes depending on the use at a particular moment.

The nodes of the SRCNet will share some of the components of the presentation layer (and the
underlying server counterparts). This decision is done to minimise the learning curve of the scientists
accessing different nodes of the SRCNet and to facilitate homogeneous access to the users (see Figure 9:
Gateway pattern to be used on the client side…). Some of the services and components should be
common to all the nodes and the orchestration of new versions will be done using what is called the
distributed deployment model described below. These common services could include, e.g. a data
discovery client, a metadata query system, a services discovery client, etc. That implies that when a new
version of a particular module is produced, there will be a way to distribute this new version to the
operations team into all the SRCNet nodes.

Figure 13. Gateway pattern to be used on the client side.
Functionality elements are declared on a configuration element. The corresponding client elements are then
produced on the client side and an orchestrator instantiates and scales the required server elements on the server
side to match user demand. The Gateway API reflects the API methods called by the user elements to communicate
with the server elements.

https://confluence.skatelescope.org/display/SRCSC/Gateway+Pattern

In this way, the SRCNet will contain different nodes sharing some common basic functionalities and
others that could be extensions and SRCNet node-specific. The selection of the node to be used by a

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 60 of 91

/id.wbh2p9pwbni9
/id.wbh2p9pwbni9
https://confluence.skatelescope.org/display/SRCSC/Gateway+Pattern

user connecting the SRCNet could be based on different criteria like the geolocation of the user
(redirecting the scientist to the closer node), the belonging of a particular program in which the data is
located or other computational resource considerations. The possibility to force the connection to a
particular node by the user should be maintained in case, e.g. the user wants to use a particular
functionality (extension) only present in one particular SRCNet node or a particular infrastructure item
(e.g. support for GPU accelerations available for a workflow).

This selection of the node of the SRCNet is mainly applicable to the presentational layer (portal node) as
during execution a more sophisticated federation execution approach would be developed in phases to
execute workflows in remote SRCNet nodes under the hood.

6.4. Metadata Management System

Some of the SRC nodes will have a dedicated Metadata Management System. This module requires to

have, in many cases, big databases and dedicated hardware so it is not foreseen the need to have these

resources in all the SRC nodes of the SRCNet. However, the metadata service should be available for all

the SRC nodes as this is a basic service so the service will be offered in the client layers of all the SRCs,

delegating the execution to the SRC nodes or locations with this capability at the server side.

Queries will be of different types:

- Discovery and query of science entities from user e.g. observational data, catalogues or VO

services

- Discovery of digital objects (e.g. data elements)

- Query on provenance metadata

- Queries on user-managed databases

- Queries on user details and group information from different modules of the system

- Queries on system datasets by modules of the system

To reduce the software elements to be implemented, it is intended to cover most or even all of the types

of queries using a unique metadata management system, so parsing, translation and execution

submodules should be designed to be reusable and database agnostic. Different access to the databases

other than the metadata management system could be proposed if major security or access limitations

are declared.

Once received a query from the User Layer or command line interface, the query is redirected to the

Metadata Management system API that:

- Parse Query: The metadata management system will be exposed in the SRCNet node API so

traditional User Interface modules and command line interfaces can instantiate it. A supported

query language is foreseen (e.g. ADQL, SQL or NoSQL parametrised languages) with possible other

supported query languages as extensions but the system should be protected against non-secure

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 61 of 91

access (e.g. SQL injection) by the implementation of a parser module that limits the action of

external users on the resources and prevents certain types of unsecured queries

- Translate Query: The query should be converted from an externally declared query language to a

native query language that the databases can understand. This translation would depend on the

final database type used by the SRC and the extensions present in the target database. For

example, it is typical to have a geometrical extension like pgSphere, Q3C or Postgis, so the

translator could decide to translate a particular ADQL function to the relevant function of one

extension that implements it with optimal performance.

- Security and allocation: Access rights of the resources involved in a particular query should be

studied. For example, it should be ensured that the user performing the query has access to all

the tables joined in the query. Also, certain queries (like non-volatile table creation into the

user-managed database) require that the resources requested are available for this user (e.g.

using a quote system). This is why during the process the Resource Management system (both for

resource provision and granting) will be invoked. As the query is usually decomposed inside the

translator submodule, this could be a good place to integrate these checks, although a different

submodule could be defined if the complexity of the translator increases too much. In case of

errors during the translation, user access or resource allocation are found, an error message will

be streamed to the user.

- Query execution: Finally, the query is sent for execution. Usually, the query executor maintains a

connection pool and dynamic creation of new connections under demand to protect the

databases from high peaks. In the case of small databases, an orchestrator could also handle the

number of active databases, adjusting the resources to the demand.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 62 of 91

Figure 14. Metadata management system architectural diagram.
Metadata management client functionalities are exposed for the SRC nodes. These functionalities will be connected
to a local or remote API where a certain metadata management system will take care of the parsing, translation,
check of access and resources and execution of the queries.

https://confluence.skatelescope.org/display/SRCSC/Metadata+Management

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 63 of 91

https://confluence.skatelescope.org/display/SRCSC/Metadata+Management

6.5.1 Metadata Replication

Usually, the hardware resources needed for a metadata system are specific. Big databases could require
high-memory servers for single-node DBs and specific server nodes for parallel databases. Also, the
complexity of the configuration of these systems means that the maintenance and upgrade of these
servers are usually done by database administrator experts.

For example, for archives like Gaia, the initial configuration to cope with the Gaia catalogue implied a
minimum of two servers (for high availability) with 4x12 cores and around 1.5 TB of RAM.

The consequence of the need for this exotic hardware is that it would not be compulsory to have a
complete metadata module deployed in all the SRCs but just ensure that the module redirects queries to
certain registered SRC full-fledged metadata systems. However, to have high availability using the
geographical distribution, a minimum of two full-flesh services should be deployed.

Alternatives are

- High availability: One primary server provides the service at one SRC. This SRC should have,
internally, local load-balancing or high-availability support. A secondary service in a different
geographical zone is prepared and maintained aligned with the primary server through stream
replication. The secondary server could be converted as primary in case of problems on the
primary SRC metadata management system.

- Load balancing: Several SRCs provide a full-flesh metadata management system. Queries from the
SRCNet are redirected to the relevant servers taking into account the network connectivity (in
general due to geographical proximity) or the load of the different servers. As in the previous case,
every SRC could also have local high availability or load balancing.

Load balancing is difficult to implement for tables that are changing too fast as the synchronisation time
could affect the database content. This is why a typical solution for load balancing is to create sticky
sessions for the ones that are modifying database content, usually related to the creation of user tables
in their private database schemas.

It is important to remark that the synchronisation of the servers could be done in different ways, either
by direct database replication methods or through the implementation of ad-hoc database
synchronisation services that could guarantee a more efficient way to consistent intermediate states.
Also, server content should be properly backed up to allow disaster recovery.

The data model behind the metadata information must be shared between all the SRCs of the SRCNet
and properly captured in the documentation. That implies that a common data model should be used.
For scientific entities, there are several standards like CAOM (Dowler et al. 2008) or ObsCore (Louys et al.
2017). These are very well-defined data models that could be extended for particular
observatories/missions.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 64 of 91

Other data models needed to be standardised are the ones related to provenance and, in particular, the
characterisation of scientific workflows or the ones used in product generation.

6.5. Authentication, Authorisation and Accounting

The SRCNet must implement a federated Authentication and Authorisation Infrastructure (AAI). This will

integrate national federations through an international inter-federation service (e.g. eduGain) to enable

the use of existing institutional accounts, and to allow the use of existing institutional credentials to

authenticate with the SRCNet Infrastructure. The AAI will link these credentials to a centrally coordinated

unique SRCNet Identity (SKA-ID?). A network of coordinated services will manage group membership and

other relevant attributes, facilitating authorisation decisions for access to SRCNet data, computing, and

other resources.

This solution should be implemented in a manner which may also make relevant decisions based on

Accounting (usage and quota) information. The obvious requirement is to give users a view of their

available quotas in advance, so they can decide whether to free up storage, ask for more computing,

switch to a different group with more resources, or just submit their work knowing it should fit. Of course

with shared resources, it is hard to guarantee that resources remain available during execution of a job

without making the infrastructure more complicated.

Some software concerns for SRCNet AAI are:

- Users will be able to Authenticate to a single SRCNet identity, which may be linked to multiple

different authentication identities. A typical example here may be a researcher’s home institution,

which is accessed via an international inter-federation service and the national identity

federations. This means that user credentials, including passwords, do not need to be directly

managed within SRCNet AAI and end services.

- Authorisation mechanisms will need to be implemented to control access to digital products and

resources. This mechanism will need to consider either identity attributes or capabilities assigned

on a job-by-job basis.

Authorisation should be handled as transparently for the user as possible, using mechanisms

such as credential delegation through tokens, so that different non-interactive modules can

integrate seamlessly.

- As the SRCNet API should include AAI and information should be exchanged in an interoperable

format (e.g. using AARC-G069 and similar) using standard schemata like inetOrgPerson,

eduPerson, voPerson, etc.

- Supporting the science work, users should have persistent globally unique identifiers which are

linked to - but different from - their home identity principal (so it can move with the users when

they change home organisations, and/or be linked to multiple accounts).

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 65 of 91

https://zenodo.org/record/6533400/files/AARC-G069%20Guidelines%20for%20expressing%20group%20membership%20and%20role%20information.pdf

Some software concerns for SRCNet Accounting are:

- The compilation of metrics like quotas or resources used should be compiled by the monitoring

system (using a hierarchical approach) and stored in the Accounting system so, at least, a global

resource allocation per user (and/or group) should be maintained in near-realtime. Local quotas

or local resource allocation could be also set up, in particular for special resources only present in

a limited number of SRCNet nodes.

- Users should be able to request modifications of their quotas (on users or groups) or resource

allocations by using the helpdesk system. These requests should contain a description of the use

case to be executed to justify the modification of the default values.

- The quota management system must not be confused with authorisation. The authorisation

system is not clairvoyant: it does not know how many resources the user needs. Failure of

authorisation should lead to an access denied error. Exceeding quota limits should lead to a failure

of writing data or running jobs (or a warning, depending on whether the limits are hard or soft).

6.5.1 AA Interface possible approaches

The SRCNet AA interface could be implemented by using, at least, two approaches.

The first one, in the BPA sense , is to implement the global SRCNet AAI making use of a global proxy:9

Figure 15. AA Interface using a global proxy.
The diagram shows an SRC in which IdPs can authenticate to SRC-based services directly or through an IdP/SP proxy
(such as AUSSRC's Keycloak). Once the SRC is connected to SRCNet (the global proxy), users can authenticate to
resources in (other) SRCs through the global proxy. Users can authenticate to the SRCNet proxy directly or through

9 https://aarc-community.org/architecture/

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 66 of 91

https://aarc-community.org/architecture/

their SRC proxy; in turn, the identity they have through the SRCNet proxy gives them access to resources pledged by
the SRC to SRCNet (obviously for a user accessing resources within their own SRC, the global proxy should not be
necessary).

The principal is the user's primary identifier, as seen through an authentication through a particular IdP
(or proxy). Thus, in general, the user's principal is different depending on whether they authenticate
directly with their IdP or they go through a proxy:

1. IdP→svc
2. IdP→SRC proxy→svc
3. IdP→global proxy→svc
4. IdP→SRC proxy→global proxy→svc

All of these authentication paths could potentially give the user different principals, though a persistent
identifier like email, ORCID or an ePUID could be carried through. Having different principals is sometimes
desirable, as users may change their home organisations but keep the proxied principals, or they would
get different rights to access their own SRCs resources - accounting for resource usage would be different.

If the SRCNet implementation does not use global proxies, the SRCNet nodes would connect as follows:

Figure 16. AA Interface not using a global proxy.

with SRC1 having its SRC proxy, and SRC2 not having one. It is possible to have SRC2's IdP cross
authenticate to SRC1's proxy, as the proxy is built to handle multiple IdPs including the selection process.
However, the trouble comes when we connect SRC1's IdP to SRC2's services: the service will now have
multiple sources of identity publishing potentially different profiles for their users and potentially different
protocols. This approach would vastly complicate running services. The implication is that every SRC will
need to run its own proxy connected to the international inter-federation service.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 67 of 91

Second approach implies a more independent SRCNet authentication system but technically more
complex so the final implementation will result in the balance of political and technical aspects.

6.6. Collaborative environment

As the data produced by SKA will be massive for many scientific analyses, the users should be prepared
to execute most of their science use cases in the SRCNet. As a requirement for the science produced,
these analyses should be reproducible and, as a requirement of the scientific process, the users should
be able to share and collaborate with their colleagues in the SRCNet.

Some functionalities should be implemented to create a collaborative environment:
- Users, teams and projects (based on groups) should have their distributed storage areas where

intermediate and final digital objects could be stored close to the SRCNet data lake nodes and
close to the SRCNet computing resources, preventing the need for upload/download of these
products from the user's local environment during the analysis.

- Digital objects could be of different natures like data files, workflow descriptions, software
containers, notebooks, tables, etc. All these objects should have a unique identifier in the SRCNet
and a way to access them.

- Users’ digital objects should be shareable by the users to other users or groups of users, allowing
collaborative work.

- Users’ digital objects could be flagged as public (shared with all).
- Different kinds of quotas should be associated with the different types of resources, to control the

proper use of the SRCNet. These quotas could be modified at a user level by the operations team
after a justified submitted request from users.

- Synchronisation of these digital objects in different locations (SRCNet nodes) would be needed in
certain cases (e.g. software containers, tables, etc.) but this will follow a similar synchronisation
procedure to the public general digital object repositories.

6.6.1. User storage areas

One of the required functionalities of the SRCNet is the possibility to execute workflows in the network
itself. These workflows are planned to be executed as close to the data as possible to prevent latencies
in accessing the data, either by a preliminary movement of data to prepare the environment or by using
a streamed data approach.

However, although this has been described in other parts of this architecture, all these workflows would
require in many cases input files from the users that are not located in the data lake and the executions
will provide intermediate and final data products that need to be allocated at the server side. Also, these
data files could be analysed as part of a collaboration so users should be able to share (with different
access levels) with other users or groups within the network. Apart from the data files, other digital
objects (e.g. software containers, workflows, notebooks, etc) would require similar levels of sharing
options.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 68 of 91

In this section, we will concentrate the analysis on the user storage areas, considering only the digital
objects that can be serialised as objects/files into a storage repository.

The user storage areas will need to be integrated with analysis libraries to be used in science analysis
threads. As many of the typical analysis libraries require to have the files used during the processing as a
POSIX file system, the easier way to integrate storage elements ready to be used by these analysis
libraries would be by using a software interface that could allow the mounting of these user spaces into
the analysis environment although other more performant approaches will be studied. User storage
areas can be abstracted with REST interfaces, as done by using the IVOA VOSpace protocol.

There are some aspects to be considered:
- User storage could/should be separated from the storage elements of the data lake to prevent

security access problems
- User storage could be only present in one particular SRC node (the one associated with the user)

and accessed from other SRC nodes computing resources in a stream-like way. This could be done
if the data products inside the user storage areas are small enough to not be affected too much by
the streaming latency

- User areas would provide an access to the data interface as closely as possible to the one used to
access files in the data lake so single client access library can be used to access any kind of data
from the SRCNet (user area and data lake products)

- Special methods to modify the visibility of data products at the level of read/write/execute for
other users and groups

Figure 17. Diagram showing the access from data of one User Storage Area.
In this particular case, user storage data locations could be also present in the Locations Database so the data can be
discovered. However, in most cases, the data will be accessed using a streamed protocol from a remote location. In
case the data is too big to work efficiently in stream mode (which usually should not be the case for users’ data, data

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 69 of 91

replication to an area close to the user (to the invoking SRC node) could be also executed as done for general data
lake products.

https://confluence.skatelescope.org/display/SRCSC/User+Storage+Areas

Users and groups are handled by the User Management System that should allow the discovery,
modification of details and creation of new groups through a user interface and command line
libraries.Users and groups are handled by the User Management System that should allow the discovery,
modification of details and creation of new groups through a user interface and command line libraries.

Discovery from data from other astronomical missions/observatories could be done by using their
Virtual Observatory protocols, allowing the saving of results from queries and retrievals into the User
Storage Areas so science use cases that require the combination of data from different sources (e.g.
multiwavelength astronomy, multi-messenger astronomy, etc.) could be implemented.

As data produced, intermediate products, or input files could be quite big and taking into account the
expected high number of scientists making use of the SRCNet, the need for quotas on the User Storage
Areas, at the user (individual users and projects/groups) level, would be a must. In case the quota is
exceeded during one workflow execution, a quota exceeded should be sent as a result and the process,
if needed, should be aborted.

If for a particular science use case or program, a temporary increment of the quota is needed, a
helpdesk request should be raised, analysed and assessed by the SRCNet operations team and, if
accepted, implemented at the user level (including the possible restoration to the original value after the
specified period).

For some high-intensive science use cases, data from the data lake could be required to be moved to a
buffer area close to the computing resources (in particular when a particular remote operation on the
data could not be done or is not supported from the remote operations interface). This buffer area could
not be, in principle, the same storage area as the one used by the User Storage Areas (probably it is
more convenient to have different storage elements for this quite volatile location). It is to be decided
how these buffered data lake product replicas compute on the user’s quota (either by counting in their
quota, counting in a separate quota or not counting at all in the user’s quota). This would be decided in
coordination with the SRCNet node members.

6.6.2 Persistent Table Upload

There is a set of science use cases that require access to a combination of tables accessible by the user

(public and science project tables that require special privileges) and tables uploaded by the users. This

is a known problem in astronomy that, for example, users have to address operations like astronomical

sources cross matches from tables produced by the project a users’ source catalogues.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 70 of 91

https://confluence.skatelescope.org/display/SRCSC/User+Storage+Areas

To solve this problem in a clean way, some solutions were developed like traditional TAP (Dowler et al.)

where a REST interface is defined that allows volatile uploads of tables before a certain query execution,

allowing the use of this volatile table as part of the query.

However, this kind of approach is not efficient for certain use cases as it requires the streaming of the

table from the user area before every query. Also, it does not allow the sharing of users’ tables with

other users and groups of users to allow collaborative work.

In order to solve this problem, some solutions were defined, e.g. the ESA TAP+ (Salgado et al. 2017) or

CADC (Dowler and Major 2018).

To allow this, the following elements need to be implemented:

- There must be defined, at least, one credentials-handling mechanism declared for the service so

the client could use it after discovering. This is covered by the new IVOA TAP 1.1 standard (Dowler

et al. 2019)

- A discovery service needs to be implemented to show the tables available to the user. For

non-authenticated users, this will only show public tables. For authenticated users, the output of

this discovery service will also show extra tables accessible to the user.

- The query parsing module should check that the tables present in the query allow accessible

tables and return an error when a table present in the query is not accessible for the user, in a

similar way that an error should be raised for tables not present in the system. To guarantee

privacy on the users’ schema, the error could be the same.

- A REST or equivalent service should be implemented to upload tables to the users’ database

schema. This service could allow also the creation of indexes on the different columns or

geometrical indexes on geometrical columns for future good performance.

- The total size of the tables present in the users’ schema should be controlled by quotas.

Uploading exceeding the quota would be denied.

- There should be a way to request and modify users’ schema quotas for users by the operations

team.

6.7. Computational resources allocation and federated execution

The SRCNet should allow the federated exec of processes as close as possible to the data, using the best
possible load-balancing of the resources available, including real-time information on the status of the
resource, and deciding the execution of workflows on the most convenient computational resources
(e.g. HPC resources).

This is why the need for a federated execution requires global/common services that make use of the
description of the SRCNet topology (resources available per node, the status of the network, load and

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 71 of 91

https://www.ivoa.net/documents/TAP/20190927/

status of the resources, location of the input data, authorisation rules, evaluation of best possible
execution plan, etc).

Metadata describing the SRCNet topology should be provided by the relevant SRCNet nodes by
providing events to global services (e.g. a federated event bus) using a hierarchical approach so the
information can be compiled and used by a global Execution Scheduler. As said, the information
obtained hierarchically from all the nodes will be an aggregated topology (probably inside a database in
which content changes in real-time). As ensuring synchronised content for all the instances could require
a heavy synchronisation process, having only a limited set of full implementations would be
recommended. This is why this service is considered global. As a global service, this service could be
deployed only in a certain number of SRCNet nodes (SRCNet node to decide) so other SRCNet nodes
could make use of it for their operations (e.g. by the shared execution planner).

This submodule, part of the Workflow Management module, would be used to decide on a good
execution strategy on the SRCNet to prevent latency and good performance metrics.

Once the best possible strategy for execution is identified, the global/common workflow management
system should request the execution of the process (either by a direct API invocation (active) or by using
a federated event bus request to the required SRC node(s)).

In both cases, information on the federated execution will be provided by the execution SRC node(s) to
the monitoring management system to update statistics, update user quotas and manifest status among
others.

Shared software should be in a portable format so local software repositories should be
synchronised/federated. In this way, execution processes and libraries are usually present close to the
execution framework preventing latency. The SRCNet will provide templates of software portable
formats and access libraries to optimise their execution into the SRCNet architecture.

Locally, orchestrators should allow the spawning of the required execution processes to obtain local
software resilience. Global/common workflow management system and the monitoring status ensure
global software resilience.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 72 of 91

Figure 18. Diagram showing the federated execution of one process.
A global workflow management system, using a global execution scheduler that makes use of one workflow analysis
system and real-time information, decides an executor SRCNet node(s). Locally, the execution framework contains an
orchestrator that uses a local repository synchronised copy of the software for execution.

https://confluence.skatelescope.org/display/SRCSC/Federated+Execution

For simple cases of accessing data through remote operations, the data mesh approach is described in
6.2.2. Data mesh approach could be used. In this case, there would not be implemented a full-fleshed
federated execution but the instantiation of parsing libraries services close to the data and the gathering
of the result of the operations in remote SRCNet nodes into one processing SRCNet node where the user
is declaring and executing the workflows. This approach is lightweight and easy to implement in many
cases with the following exceptions:

- Data Mesh is mainly applicable to direct operations on the data. Complex operations or workflows
that require data aggregations are not easily mapped with this approach.

- Only operations that have been declared, implemented in the parsing libraries and distributed are
available. New operations needed for a particular science use case require implementation and
distribution. This second exception could be mitigated if the operation is declared by the user,
converted to a portable software (e.g. by creating a container), distributed to the remote SRCNet
node and executed by a remote orchestrator but the performance of the operation and the

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 73 of 91

https://confluence.skatelescope.org/display/SRCSC/Federated+Execution
/h.jsixs28gh41t

correct execution is not guaranteed as the default official operations declared in the official
libraries. Also, users portable code could be prone to security analysis by the SRCNet Operations
team and software to detect anomalous behavior and breaches, although the approach to be
generally used is to provide portable software templates to be used by users with some security
rules already in place.

6.7.1. Shared Execution planner

Integrating heterogeneous hardware resources for execution on the SRCNet would require, as
commented, the implementation of a shared execution planner. This shared execution planner should
have metadata available to decide on the best possible location(s) where a particular workflow, e.g. a
science analysis thread, should be executed.

To obtain this information, several aspects are required, e.g., the metadata gathering from the
resources, the location of the input data to be used, and real-time information on the status of the
network.

In the case of resource characterisation, a unique metadata format would be required to compile the
available hardware resources (sometimes heterogeneous) with comparable metrics. Some metadata
definitions have been done for this particular problem, mostly focused on the cloud hardware metadata
characterisation.10 11

The SRCNet topological model needed should define different aspects to be captured in an abstract but
homogeneous way resource aspects like Scalability, Autonomy, Availability, QoS, Performance,
Consistency, Security and Reliability.

On computing non-functional requirements, metadata can be divided into metrics like (non-exhaustive
list):

- Computing engines:
- CPU: CPUSpeedProperty, CPUNumberOfCores, CPUArchitecture, CPUTypeProperty and

CPUFlopsProperty, etc
- GPU: GPUSpeedProperty, GPUNumberOfCores, GPUArchitecture, GPUTypeProperty and

GPUFlopsProperty, etc
- Memory:

- MemoryAllocationProperty (to capture Policies in the memory allocation), MemorySize
(total size), etc

11 TOSCA http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

10 mOSAIC ontology
https://www.researchgate.net/publication/220726510_An_Analysis_of_mOSAIC_ontology_for_Cloud_Resources_an
notation

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 74 of 91

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://www.researchgate.net/publication/220726510_An_Analysis_of_mOSAIC_ontology_for_Cloud_Resources_annotation
https://www.researchgate.net/publication/220726510_An_Analysis_of_mOSAIC_ontology_for_Cloud_Resources_annotation

- Network:
- NetworkLatencyProperty, NetworkDelayProperty, NetworkBandwidthProperty, etc

- Data Lake:
- ResourceElementSpaceProperty, ResourceElementOccupancyProperty,

ResourceElementTransferRatePropety, etc
- General node/cluster metadata:

- OccupancyProperty, AvailabilityFlag, etc
- NetworkLatencyA, NetworkLatencyB, etc

At the same time, the characterisation of the software elements of the workflow to be executed is
required in order to define the dependencies of a particular software instance that are needed for the
execution:

- Software versioning, availability and dependencies
- Data Dependencies:

- PID (persistent identifier) of input data to resolve location, size and type
- Software Architect dependencies:
- SupportForCPU, SupportForGPU, SupportForFPGA, SupportForARM, etc

- Computing engines dependencies:
- NumberOfCPUs, NumberOfGPUs, CPUFlops, GPUFlops, etc

- Memory Requirements:
- MemoryRequired

- Priority Requirements:
- InteractiveFlag, BatchFlag, PriorityFlag, etc

All these metadata should be gathered by the monitoring system by using different possible approaches:
- Centralised approach: All metadata is gathered in a central repository
- Decentralised approach: Metadata is gathered into the different SRCs and it is made available for

the different SRCs
- Hierarchical approach: Similar to the decentralised approach but allowing different internal levels

at every SRCs

A similar approach could be used to include pure services into the SRCNet providing a software
description of the functionality and performance indicators.

Resources, software and services characterisation metadata are available for discovery and detailed
queries through the Information System. The shared Execution Planner submodule inside the Resources
Allocation system would use all these metadata to identify a good candidate for the execution of a
certain workflow within the SRCNet.

A future upgrade of the shared execution planner could imply the use of heuristic and machine learning
algorithms to optimise the result using the real metadata on the use of the system, although these
algorithms should take into account the unavailability of resources through real-time monitoring status.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 75 of 91

6.8. Distributed software management

The SRCNet will need to deploy, federate, and synchronise distributed software across the SRCNet
nodes, making sure that all dependencies are satisfied for each version deployed. The main categories of
software are:

- Common API interfaces: Common modules defining API signatures will be defined and propagated
to the different SRCNet nodes to ensure harmonised behaviour. The update and deployment of
these modules, which could have different local implementations, must be coordinated and
planned so local implementations could be also updated. The same coordination process will be
used for other central elements of the science application or libraries.

- Services software: Core modules will be defined and will be quite standard for the SRCNet to
ensure that some of the basic functionalities have the same behaviour in different SRC nodes. For
example, the client and server libraries of some of the management system modules (metadata
and data access, federated computing execution, authentication/authorisation rules checks,...)
should be common to guarantee security

- Infrastructure software: Infrastructure provisioning will look different at the SRCNet nodes owing
to their heterogeneity, however by splitting areas of concern vertically in the stack and
establishing APIs at the different layers, sites will be able to share and collaborate on building
infrastructure in a consistent manner whenever possible. This may include deploying an
orchestrator management solution to consistently deploy services software. Defining the required
infrastructure as code will also help new, less-experienced sites get started in deploying the
SRCNet services (software category above) in minimal time. Infrastructure as Code (IaC) is an
extension of the DevOps methodology and is a means by which infrastructure is provisioned and
managed using code instead of manual processes. This allows for better resiliency, consistency,
collaboration and increased speed to deployments of services. IaC will serve as a starting point to
build a community for SRCNet Operations.

- Science software: Science workflows will make use of libraries that do not only require to be
accessible in all the SRC nodes but, also, it would be required to have specific versions and other
relevant software metadata (e.g. target architecture, properties, etc) to ensure reproducibility.
Also, the science workflows and elements created by the users could need to be available for
execution in all the SRCNet nodes.

There are different technical solutions to enable this functionality in the SRCNet but two aspects should
be considered in the design:

- Commonality across the software categories would be in the form of a shared software repository
created to have a common and consistent repository of science analysis libraries, SRCNet science
platform modules and, in the collaboration side, science workflows created by the user. This
shared software repository could be federated and have different instances synchronised at
different time zones to provide high availability and, if required, load balancing.

- Software lifecycles, associated policies and metadata characteristics will look different for the
different types of software and thus these types of software will be treated differently during the
building, storing and distribution phases. Building portable software will be essential for all
software categories but especially for services and infrastructure software. Artefact registries can
be used for storing and distributing services and infrastructure software with the corresponding

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 76 of 91

metadata required for versioning, however, metadata needs may entail a separate entity to
manage artefact metadata in an efficient manner. Older software versions could need to be
available, in particular the ones referenced in workflows, in order to facilitate reproducibility.

- API documentation should consider migration, replication and upgrade processes, particularly
with respect to infrastructure software.

The shared software repository should allow flagging the versions to be instantiated by default of the
different modules, to guarantee that the same version of the SRCNet core modules is running in all the
SRCNet nodes and to update the global network when a new version of one particular module is set to
the default version. Also, that could require that the orchestrators in charge of the execution of the
SRCNet science platforms nodes are refreshing and react to these flags. This synchronisation of modules
across the SRCNet could be obtained using a common CI/CD tool and setting the modules to the default
version, including other dependent modules and external dependencies that should be also updated to
prevent incompatibilities.

Software is only valuable as long as it is maintained. It will also be important to consider the maintainers

of (all) the types of software and establish communities for short-term or long -term maintenance as

applicable. This may be by identifying maintainers within the SRCNet community, and/or considering

applications of our software to other communities and sourcing person-power from the open-source

community.

Appendix 1: Requirements Supporting Architecture Principles

In the following subsections, we present SRC Level 0 requirements supporting the different Architectural
principles defined in the previous section. These requirements were compiled and curated by the
different working groups of the SRCNet.

A1.1 The main objective of the SRCNet is to maximise the science produced by the community using SKA
data

Key Summary

SRC-20 SRCNet Ingest of SKAO Data Products

SRC-27 Multi-wavelength support

SRC-32 Facilitation of collaboration for data post-processing and analysis

SRC-77 Mapping Science team needs to SRC resources

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 77 of 91

https://jira.skatelescope.org/browse/SRC-20
https://jira.skatelescope.org/browse/SRC-27
https://jira.skatelescope.org/browse/SRC-32
https://jira.skatelescope.org/browse/SRC-77

SRC-96 Baseline Implementation Deadline

SRC-102 Science analysis platform

SRC-103 User Proficiency in Radio Astronomy

SRC-112 GUI and CLI interfaces

SRC-117 DOIs of publications related to archive products

SRC-134 User Support and Help Desk

SRC-155 Authorised Programmatic Access to the Science Archive Data Products

SRC-189 User-configured pipelines

SRC-190 Include custom software in workflows

SRC-199 Document publicly-accessible capabilities

SRC-202 Save User Queries for the Science Archive

SRC-209 SRCNet GUI Accessibility

A1.2 SRCNet development is a global effort done by all the SRCs

Key Summary

SRC-50 Coordination of resources and services

SRC-71 Monitoring SRCs against MoUs

A1.3 Architecture should be scalable

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 78 of 91

https://jira.skatelescope.org/browse/SRC-96
https://jira.skatelescope.org/browse/SRC-102
https://jira.skatelescope.org/browse/SRC-103
https://jira.skatelescope.org/browse/SRC-112
https://jira.skatelescope.org/browse/SRC-117
https://jira.skatelescope.org/browse/SRC-134
https://jira.skatelescope.org/browse/SRC-155
https://jira.skatelescope.org/browse/SRC-189
https://jira.skatelescope.org/browse/SRC-190
https://jira.skatelescope.org/browse/SRC-199
https://jira.skatelescope.org/browse/SRC-202
https://jira.skatelescope.org/browse/SRC-209
https://jira.skatelescope.org/browse/SRC-50
https://jira.skatelescope.org/browse/SRC-71

Key Summary

SRC-14 Overall SRC storage capacity must be scalable

SRC-19 Global Data Management System

SRC-29 Software Interoperability

SRC-71 Monitoring SRCs against MoUs

SRC-78 Interoperability

SRC-142 Portable Computer System Provisioner Service

SRC-144 Software-Defined Infrastructure

SRC-207 SRCNet Scalability

A1.4 Architecture should be extensible

Key Summary

SRC-33 Common API and CLI

SRC-42 User applications in SRCNet Toolbox

A1.5 Data and Computing Resilience

Key Summary

SRC-17 Data Availability in pledged storage

SRC-19 Global Data Management System

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 79 of 91

https://jira.skatelescope.org/browse/SRC-14
https://jira.skatelescope.org/browse/SRC-19
https://jira.skatelescope.org/browse/SRC-29
https://jira.skatelescope.org/browse/SRC-71
https://jira.skatelescope.org/browse/SRC-78
https://jira.skatelescope.org/browse/SRC-142
https://jira.skatelescope.org/browse/SRC-144
https://jira.skatelescope.org/browse/SRC-207
https://jira.skatelescope.org/browse/SRC-33
https://jira.skatelescope.org/browse/SRC-42
https://jira.skatelescope.org/browse/SRC-17
https://jira.skatelescope.org/browse/SRC-19

SRC-21 Data Integrity is assured during replication

SRC-46 Realtime status

SRC-48 Monitoring Suite

SRC-50 Coordination of resources and services

SRC-61 Science Data Products Publishing

SRC-71 Monitoring SRCs against MoUs

SRC-72 Graceful exit from the SRC Network

SRC-109 Availability of Science Data Product Index system

SRC-135 Centralised monitoring of services

SRC-153 High Availability of Data Management Service

SRC-197 Quality Assurance for User Software

SRC-206 SRC Net Security

SRC-208 SRCNet Reliability

SRC-232 Global Network Health View

A1.6 FAIR principles

Key Summary

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 80 of 91

https://jira.skatelescope.org/browse/SRC-21
https://jira.skatelescope.org/browse/SRC-46
https://jira.skatelescope.org/browse/SRC-48
https://jira.skatelescope.org/browse/SRC-50
https://jira.skatelescope.org/browse/SRC-61
https://jira.skatelescope.org/browse/SRC-71
https://jira.skatelescope.org/browse/SRC-72
https://jira.skatelescope.org/browse/SRC-109
https://jira.skatelescope.org/browse/SRC-135
https://jira.skatelescope.org/browse/SRC-153
https://jira.skatelescope.org/browse/SRC-197
https://jira.skatelescope.org/browse/SRC-206
https://jira.skatelescope.org/browse/SRC-208
https://jira.skatelescope.org/browse/SRC-232

SRC-23 Data provenance repository

SRC-38 Data stewardship in software and frameworks

SRC-40 Interoperability of Data Formats

SRC-41 SRCNet Abstraction and reusability

SRC-53 IVOA Access Services

SRC-54 Virtual Observatory Metadata Models

SRC-55 Public API Protocol

SRC-56 Public API Standards

SRC-61 Science Data Products Publishing

SRC-63 Browsable Science Data Products Catalogue

SRC-65 Observatory Data Products Findability Metadata

SRC-66 New Products Registration

SRC-80 Data Products Findability

SRC-81 Advanced Data Products Metadata Association

SRC-84 Archived Data Products Accessibility

SRC-88 Advanced Data Product Documentation

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 81 of 91

https://jira.skatelescope.org/browse/SRC-23
https://jira.skatelescope.org/browse/SRC-38
https://jira.skatelescope.org/browse/SRC-40
https://jira.skatelescope.org/browse/SRC-41
https://jira.skatelescope.org/browse/SRC-53
https://jira.skatelescope.org/browse/SRC-54
https://jira.skatelescope.org/browse/SRC-55
https://jira.skatelescope.org/browse/SRC-56
https://jira.skatelescope.org/browse/SRC-61
https://jira.skatelescope.org/browse/SRC-63
https://jira.skatelescope.org/browse/SRC-65
https://jira.skatelescope.org/browse/SRC-66
https://jira.skatelescope.org/browse/SRC-80
https://jira.skatelescope.org/browse/SRC-81
https://jira.skatelescope.org/browse/SRC-84
https://jira.skatelescope.org/browse/SRC-88

SRC-90 Data Access Policy

SRC-115 Public data findable through the search service

SRC-118 Uniform vocabulary in the archive

SRC-167 Use of IVOA recommendations for ADP (meta)data

SRC-168 FAIR compliant vocabularies

SRC-169 Qualified references to other (meta)data within ADPs

SRC-171 Access to the ODP metadata when ODP no longer available or not authorised access

SRC-172 ODPs with accurate and relevant attributes following IVOA standards

SRC-173 ODPs with a clear and accessible data usage license

SRC-193 Associate DOI to output data

SRC-198 Exchange Archive Products with External Institutions

SRC-211 Software and container repositories interface

SRC-216 Persistent links to data products.

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 82 of 91

https://jira.skatelescope.org/browse/SRC-90
https://jira.skatelescope.org/browse/SRC-115
https://jira.skatelescope.org/browse/SRC-118
https://jira.skatelescope.org/browse/SRC-167
https://jira.skatelescope.org/browse/SRC-168
https://jira.skatelescope.org/browse/SRC-169
https://jira.skatelescope.org/browse/SRC-171
https://jira.skatelescope.org/browse/SRC-172
https://jira.skatelescope.org/browse/SRC-173
https://jira.skatelescope.org/browse/SRC-193
https://jira.skatelescope.org/browse/SRC-198
https://jira.skatelescope.org/browse/SRC-211
https://jira.skatelescope.org/browse/SRC-216

SRC-271 FAIR compliance and proper credit

A1.7 The SRCNet Architecture should optimise data logistics, preventing unnecessary moving of data

Key Summary

SRC-15 SRC Data Index

SRC-19 Global Data Management System

SRC-26 Policy driven data distribution and processing

SRC-74 SRC - SRC interfaces

SRC-136 Data visualisation service

SRC-139 SRCNet shall have federated data management/location service

SRC-158 SRC Data Management Data shall allow replica requests

SRC-185 Access multiple distinct inputs from within a workflow

SRC-194 Provide “scratch space” for use during workflows

SRC-226 Managing data transfers

A1.8 SRCNet should allow federated execution

Key Summary

SRC-29 Software Interoperability

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 83 of 91

https://jira.skatelescope.org/browse/SRC-271
https://jira.skatelescope.org/browse/SRC-15
https://jira.skatelescope.org/browse/SRC-19
https://jira.skatelescope.org/browse/SRC-26
https://jira.skatelescope.org/browse/SRC-74
https://jira.skatelescope.org/browse/SRC-136
https://jira.skatelescope.org/browse/SRC-139
https://jira.skatelescope.org/browse/SRC-158
https://jira.skatelescope.org/browse/SRC-185
https://jira.skatelescope.org/browse/SRC-194
https://jira.skatelescope.org/browse/SRC-226
https://jira.skatelescope.org/browse/SRC-29

SRC-32 Facilitation of collaboration for data post-processing and analysis

SRC-114 Unified access and query interfaces for the Science Archive

SRC-143 Federated Services for Compute/Workflow Management

A1.9 Execution of analysis workflows should be reproducible

Key Summary

SRC-22 Reproducibility of results

SRC-23 Data provenance repository

SRC-24 Software versioning

SRC-30 Software lifecycle management

SRC-85 Provenance Repository Management

SRC-86 Provenance Repository Content

SRC-87 Provenance Capture

SRC-88 Advanced Data Product Documentation

SRC-94 Metadata management for acceptable Science Archive products

SRC-105 Consistent Release Status

SRC-138 Provenance Visualization

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 84 of 91

https://jira.skatelescope.org/browse/SRC-32
https://jira.skatelescope.org/browse/SRC-114
https://jira.skatelescope.org/browse/SRC-143
https://jira.skatelescope.org/browse/SRC-22
https://jira.skatelescope.org/browse/SRC-23
https://jira.skatelescope.org/browse/SRC-24
https://jira.skatelescope.org/browse/SRC-30
https://jira.skatelescope.org/browse/SRC-85
https://jira.skatelescope.org/browse/SRC-86
https://jira.skatelescope.org/browse/SRC-87
https://jira.skatelescope.org/browse/SRC-88
https://jira.skatelescope.org/browse/SRC-94
https://jira.skatelescope.org/browse/SRC-105
https://jira.skatelescope.org/browse/SRC-138

SRC-141 Distributed Software/Workflow Repository

SRC-174 Associate the ODPs with detailed provenance

SRC-181 Create custom pipelines and configurations

A1.10 Curation and preservation

Key Summary

SRC-24 Software versioning

SRC-30 Software lifecycle management

SRC-31 Software and container repositories

SRC-106 Long-term preservation of Observatory Data Products

SRC-107 Long-term preservation of Advanced Data Products

SRC-110 Search web service to query archive products

SRC-140 IVOA-Compliant Data Archiving

SRC-204 Data Releases

SRC-212 Software and container repositories policies

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 85 of 91

https://jira.skatelescope.org/browse/SRC-141
https://jira.skatelescope.org/browse/SRC-174
https://jira.skatelescope.org/browse/SRC-181
https://jira.skatelescope.org/browse/SRC-24
https://jira.skatelescope.org/browse/SRC-30
https://jira.skatelescope.org/browse/SRC-31
https://jira.skatelescope.org/browse/SRC-106
https://jira.skatelescope.org/browse/SRC-107
https://jira.skatelescope.org/browse/SRC-110
https://jira.skatelescope.org/browse/SRC-140
https://jira.skatelescope.org/browse/SRC-204
https://jira.skatelescope.org/browse/SRC-212

Appendix 2: Actors fine-grained classification

A2.1 Developer role fine-grain classification

Fine-grained classification of the Developer role extracted from specific use cases.

Role Description Basic Permissions

Application

Developer

Someone who is developing user front-end

functionality of SRCNet tools.

Advanced Execution

Upgraded Quotas

Software Publishing

Deployment

Component

Developer

Someone who is developing components of

software to be used in workflows that are to be

executed in SRCNet.

Advanced Execution

Upgraded Quotas

Software Publishing

Deployment

Pipeline

Developer

Someone who is developing data processing

pipelines and scientific workflows that are to be

executed in SRCNet.

Advanced Execution

Upgraded Quotas

Software Publishing

SRC Developer Someone who is affiliated with one of the SRCs or

SKAO and developing software for the core

functionality of SRCNet.

Advanced Execution

Upgraded Quotas

Software Publishing

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 86 of 91

A2.2 Scientist role fine-grain classification

Fine-grained classification of the Scientist role that could be used in specific use cases.

Role Description Basic Permissions

Researcher Someone who is using SRCNet to work with the

SKAO data, and is affiliated with a research

institution.

Advanced Execution

Extended Quotas

Citizen

Scientist

Someone who is not affiliated with a research

institution but wants access to SKAO data.

Restricted Execution

Restricted Quotas

Commercial

user

(Someone from...) A company that would like to

work with SK

AO data.

Advanced Execution

Restricted Quotas

Principal

Investigator

Someone who leads a science project/proposal. Advanced Execution

Upgraded Quotas

Project

Manager

Someone who manages a team of scientists working

with the SKAO data using SRCNet.

Advanced Execution

Upgraded Quotas

Public Data

Researcher

A researcher with generic access to low-cost public

services, e.g., query public metadata, visualize public

data, request cutouts of public data, and download a

reasonable amount of public data.

Restricted Execution

Restricted Quotas

Public Data

Researcher

with resource

allocation

A Public Data researcher with authenticated access

to processing and storage resource allocation.

Restricted Execution

Extended Quotas

Science

Project

Member

Someone who is using SRCNet resources allocated to

a science project.

Advanced Execution

Upgraded Quotas

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 87 of 91

SKAO Staff

Researcher

An SKAO researcher with authorized access to all or

parts of the data collection and processing and

storage allocation in their role as support

astronomer.

Advanced Execution

Upgraded Quotas

Superuser access

SRC

Coordination

Committee

(SCC)

Member

A member of the SRC Coordination Committee

(high-level SRC project oversight committee).

Advanced Execution

Upgraded Quotas

Superuser access

Support

Scientist

Someone who is affiliated with one of the SRCs or

SKAO and assists the SRCNet users with the science

tasks through the helpdesk.

Advanced Execution

Upgraded Quotas

Community

engagement/

Professional

Research

Investment

Manager

(PRISM)

Someone who supports the growth of users and

communities on the facility. They contribute to

maximising the science and value of research

investments.

Advanced Execution

Upgraded Quotas

A2.3 Operator role fine-grain classification

Fine-grained classification of the Scientist role that could be used in specific use cases.

Role Description Basic Permissions

SRC

Operations

Group

Member

A member of the SRC Operations Group, which will

track day-to-day global SRC system health, and

follow up on reported problems to ensure that

issues are resolved. The members of this team

should be able to perform corrective procedures

into the system and provide stats, metrics and

produce dashboards on the SRCNet usage.

Advanced Execution

Upgraded Quotas

Superuser access

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 88 of 91

The SRC Operations Group will be composed of

members from different SRCs and SKAO so that

both remote and local operations could be

executed. Also, this multi-SRC composition will help

to have better maintenance support at different

hours.

SRC Site

Operative

An operative working at an individual SRC site

(operating and maintaining HW and per-SRC

services).

Advanced Execution

Upgraded Quotas

Local admin priviledges

Technical
support
operator

Someone who is affiliated with one of the SRCs and

assists the SRCNet users with technical tasks

through the helpdesk.

Advanced Execution

Upgraded Quotas

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 89 of 91

References

The following documents are referenced in this document. In the event of a conflict between the
contents of the referenced documents and this document, this document shall take precedence.

Breen, S., Bolton, R., & Chrysostomou, A. (2021, May 18). SKAO SCIENCE DATA PRODUCTS: A SUMMARY.

Retrieved May 3, 2023, from

https://aussrc.org/wp-content/uploads/2021/06/SKA-TEL-SKO-0001818-01_DataProdSummary-si

gned50.pdf

Clarke, A., Franzen, T., Breen, S., & Bolton, R. (n.d.). SRCNet Use Cases. SRCNet Use Cases.

https://docs.google.com/document/d/12Tlg438xfZahNusCfAdqzm6u6XqUZQ8HdhtgI5zr5rQ/

Dehghani, Z. (2022). Data Mesh: Delivering Data-Driven Value at Scale. O'Reilly Media, Incorporated.

Dowler, P., Gaudet, S., Duran, D., Redman, R., Hill, N., & Goliath, S. (2008). Common Archive Observation

Model. In R. W. Argyle, J. R. Lewis, & P. S. Bunclark (Eds.), Astronomical Data Analysis Software

and Systems XVII: Proceedings of a Conference Held in Kensington Town Hall, London, United

Kingdom, 23-26 September 2007. Astronomical Society of the Pacific.

Dowler, P., & Major, B. (2018). YouCat: User Catalogue Service. IVOA Nov 2018 DAL session. Retrieved 03

14, 2023, from https://wiki.ivoa.net/internal/IVOA/InterOpNov2018DAL/tap-youcat.pdf

Dowler, P., Rixon, G., Tody, D., & Demleitner, M. (2019, September). Table Access Protocol Version 1.1 (1.1).

Table Access Protocol Version 1.1. https://www.ivoa.net/documents/TAP/20190927/

Franzen, T., Clarke, A., Breen, S., & Bolton, R. (n.d.). SRCNet Visualisation Use Cases. SRCNet Visualisation

Use Cases. https://docs.google.com/document/d/1gnPBvzAi9hOkS5zCeUiGkdhwQGZepZbe/

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 90 of 91

Gorelik, A. (2019). The Enterprise Big Data Lake: Delivering the Promise of Big Data and Data Science.

O'Reilly Media.

Louys, M., Tody, D., Dowler, P., Durand, D., Michel, L., Bonnarel, F., & Micol, A. (2017, May). Observation

Data Model Core Components, its Implementation in the Table Access Protocol Version 1.1. IVOA

specifications. 10.5479/ADS/bib/2017ivoa.spec.0509L

Quinn, P. (n.d.). SRC White Paper v1.0 Final+. Retrieved May 3, 2023, from

https://aussrc.org/wp-content/uploads/2021/05/SRC-White-Paper-v1.0-Final.pdf

Quinn, P., Axelrod, T., Bird, I., Dodson, P., Szalay, A., & Wicenec, A. (2015). Delivering SKA Science in

Proceedings of Advancing Astrophysics with the Square Kilometre Array. SKAO.

10.22323/1.215.0174

Salgado, J., Bolton, R., Swinbank, J., Joshi, R., Sánchez, S., Villote, J., Gaudet, S., Yates, J., Barbosa, D.,

Taffoni, G., Bradley, F., & van Haarlem, M. (2023). SRC Net Top-Level Roadmap.

Salgado, J., Gonzalez-Nuñrez, J., Gutierrez-Sanchez, R., Segovia, J. C., Durán, J., Hernández, J. L., & Arviset,

C. (2017). The ESA Gaia Archive: Data Release 1. Astronomy and Computing, 21(1), 22-26.

https://www.sciencedirect.com/science/article/abs/pii/S2213133717300355

Simmonds, R. (n.d.). SKA-SDP Memo SKA-TEL-SDP-0000060 v01C.

https://ska-sdp.org/sites/default/files/attachments/ska-tel-sdp-0000060_01c_rep_sdpmemoregio

nalcentres_-_signed.pdf

SKAO. (2020). SKA Observatory Establishment and Delivery Plan. SKAO.

Wu, C., Wicenec, A., & Checcucci, A. (n.d.). Optimizing NGAS for the MWA Archive. Experimental

Astronomy, 36, 679–694. https://doi.org/10.1007/s10686-013-9354-1

Document
Revision:
Date:

SRC-0000001
01
2023-06-01

UNRESTRICTED
Author: Jesus Salgado et al

Page 91 of 91

		2023-08-21T08:13:32-0700
	Agreement certified by Adobe Acrobat Sign

