Tangerine team update -y

(SKA Science Platform Prototyplng) |

Vision and Progress

-

R

Arpan Das(EPFL)
Rohit Sharma (FHNW)

-

Spectral Index Workflow

This workflow describes how to combine two images taken at different frequencies of the 1 Brlef overview thOW eXlStlng WOI'kﬂOW paCkageS
same saurce Into a spectral index map. run and how the integration tools supplied by each
workflow

e Not to give an in depth functional analysis of each
workflow package

Calculate the

convolving beam size

e This analysis is designed to give a more technical
overview of how each workflow package could be

[smaller] Which image has g -
T the smallergbeam? Used Wlthln the SRC Net
The packages studied are:
Which image has th
Iov(\:ler reasielutia:n?) ([] N eXtﬂOW
e Snakemake
e Daliuge
¢ CwL
e WDL
Mask out noise
| Meskounoise | e Ruffus
T~ e Yadage
Generate the spectral ([] Stl mela

index map

Nextflow:

NextFlow uses a scripting language similar to CWL, based upon a language called 'groovy' (an extension of
java), and provides out-of-the-box executors for GridEngine, SLURM, LSF, PBS, Moab and HTCondor batch
schedulers, and for Kubernetes, Amazon AWS, Google Cloud, and MS Azure platforms.

The NextFlow application offers the following commands:

clean - clean up a project cache and work directories

clone - clone a project into a folder

config - print a project configuration

console - launch NextFlow interactive console

drop - delete the local copy of a project

help - print the usage help for a command

info - print project and system runtime information

kuberun - execute a workflow in a Kubernetes cluster (experimental)
list - list all downloaded projects

log - print executions log and runtime info

pull - download or update a project

run - execute a pipeline project

self-update - update NextFlow runtime to the latest available version
view - view project script file(s)

Basic Concepts

e Designed around Linux Platform for data science applications

e Linux provide many simple but powerful CL and scripting tools, when chained
together facilitate complex data manipulations

e Nextflow extends this approach, adding ability to define complex program and a
high-level parallel computational environment based on dataflow programming
model

Nextflow Pipeline Script are made by joining different processes

e Processes are executed independently and isolated from one another

e Each process can be written in any scriptable language which is executable on
Linux platform (Bash, Perl, Ruby, Python etc..)

e They do share a common writable state

e The processes can communicate via asynchronous queues, called channels

e Any Process can define one or more channels as input and output

Features

Fast prototyping

Nextflow allows you to write a computational pipeline by making
it simpler to put together many different tasks.

You may reuse your existing scripts and tools and you don't
need to learn a new language or API to start using it.

Portable

Nextflow provides an abstraction layer between your pipeline's
logic and the execution layer, so that it can be executed on
multiple platforms without it changing.

It provides out of the box executors for GridEngine, SLURM,
LSF, PBS, Moab and HTCondor batch schedulers and for
Kubernetes, Amazon AWS, Google Cloud and Microsoft Azure
platforms.

Continuous checkpoints

All the intermediate results produced during the pipeline
execution are automatically tracked.

This allows you to resume its execution, from the last
successfully executed step, no matter what the reason was for
it stopping.

Reproducibility

Nextflow supports Docker and Singularity containers
technology.

This, along with the integration of the GitHub code sharing
platform, allows you to write self-contained pipelines, manage
versions and to rapidly reproduce any former configuration.

Unified parallelism

Nextflow is based on the dataflow programming model which
greatly simplifies writing complex distributed pipelines.

Parallelisation is implicitly defined by the processes input and
output declarations. The resulting applications are inherently
parallel and can scale-up or scale-out, transparently, without
having to adapt to a specific platform architecture.

Stream oriented

Nextflow extends the Unix pipes model with a fluent DSL,
allowing you to handle complex stream interactions easily.

It promotes a programming approach, based on functional
composition, that results in resilient and easily reproducible
pipelines.

// Declare syntax version
nextflow.enable.dsl=2

// Script parameters

params.query = "/some/data/sample.fa"
params.db = "/some/path/pdb"

process processOne {
input:
path query
path db
output:
path "pathOne.txt"

// process is defined here.

¥

process processTwo {
input:
path in path
output:
path "pathTwo.txt"

// process is defined here.

}

workflow {
def query ch = Channel.fromPath(params.query)

processOne(query ch, params.db) | processTwo | view

The pipe between the two processes forwards the output from
one process to the inputs of the following one

Creates two processes (one for each function) and a channel
(query_ch)

Both processes will be started at the same time and they will
listen to their respective input channels

When processOne emit a value, processTwo will receive it

Inside the triple quotes the user writes a bash script, which
can kick off a script in python, R, or other languages

To use something other than bash, the first line of the script
should be #!/usr/bin/perl, or #!/usr/bin/python, etc

To submit jobs via SLURM the process.executor in the
nextflow.config file should be 'slurm'’

NextFlow integrates with github, and if a pipeline is not found
locally by the executor it will automatically look for a public
github repository with the same name, download it, and
execute it.

brocess get_convolution_bean_size

/1 NOTE: for some reason T have to make these variables of type val instead of path or file, or otherwi:
/ does not pull in the files from the previous working directory
input:

val bean_size_0_path

val bean_size_1_path

11 WoTE keywords doesn’t appear to work for type file, so T have to use type path.

Spectral Index Workflow

Spectral Index Workflow

output
path ‘bean-size', emit: bean_size
val bean_size

same source into a spectralindex map.

/1 NOTE: the exec block runs groovy script. the conmand task.WorkDir.resolve() doesn't work inside a sci

/ strangely, inside an exec or script block the working directory is the directory from which Ne

bash script (bounded by three double quotes) the working directory is the task directory of tht
sk.workDir.resolve() to add the fULL path to the task directory

1/ get the bean sizes fron the £i1
Calculate th bean_size 0 = file(task.workDir.resolve(bean_size_0_path)).text.toFloat()
convolving beam size bean_size_1 = file(task.workDir.resolve(bean_size_1_path)).text.toFloat()

/1 which one is the larger? update the return

Nextflow
e ey Workflow

/1 increase the beam size by 2% so that we can do the convolution

Which image has
the smaller beam?

Convalve the image
bean_size = bean_size * 1.62
workFlon

Which image has the

lower resolution? NOTE: groovy has a max() function, but T couldn't get it to work

/1 nake inages from channels © and 63 (in paraliel)
make_inage_channel_0(HEASUREMENT_SET)
make_inage_channel_63(MEASURENENT_SET)

//vean_size = nax(bean_size_0, bean_size 1)

1/ write to an output file

.
Regrid the image ihigher]
/1 NOTE: using a bash script that does ‘echo an-size' doesn't work for some reason. the

Calulate the M.

Calculate the AMS

Mask out noise

task.workDir.resolve(‘bean-size').text = bean_size.toString()

println "convolving to a an of size " + bean_size.toString() + " arcsec”

the major and minor axes of the psfs

majoraxis = inhead(inagenane =
minorAxis = inhead(inagename

‘inage.inage", mode =
‘inage.inage’, mode

‘get’, hakey = ‘bma3’
get’, hakey = ‘bmin'

Mask out noise

returned format is {'unit': ‘arcsec’, 'value': 18.5739427709961}, so to get the valve and unit ¢

Generate the spectral value = ga.getvalue(majorAxis)
indexmap. unit = ga.getunit(majoraxis)

container 'amigahub/casai6.s.2

copy /1 got the major axis restoring bean sizes for these images

get_bean_s1ze_(make_inage_channel_.out.clean_inage)

bean_size_63(make_inage_channel_63.out.clean_inage)

HEASUREMENT_SET = file('/measunement-sots/30391_ctn_nosaic_spnd.ns’) stageIntiode
IMAGE. Le(*/scripts/make_inage_channel..py

SCRIPT_IMAGE 63 = file('/scripts/nake.inage_channel.py’) input

file casa_nap
/1 get the larger of the two bean sizes

output bean_size = get_convolution_bean_size(get_bean_size 0.out.bean_size, get_bean_size 63.0ut.bean_size)

spectral_index.fits'

/1 convolve image © with a Gaussian

PT_CONVOLVE = File(*/scripts/convolve.py
convolve_0(make_inage_channel_0.out.clean_inage, bean_size)

//gocker run -v /nome/tang: Jsertpts -y /hone/t:

Iwork 5.2 ./casa-6.5.2-26-py3.6/vin, R S L |

docker run -v /home/ pts:/scripts v
convolve_63(make_inage_channel_63.out.clean_inage, bean_size)

/1 make a spectral index map from our two inages
map_spectral_index = make_spectral_index_map(convolve_0.out.snooth_inage, convolve_63.out.snooth_inage
map_fits = export_fits(map_spectral_index)

3 /1 export fits

nake_inage_channel 0
copy_required_inages
/1 copy any files we need to the images directory

Hogified: 26/04/2023
copy_required_inages(map_spectral_index, map_fits)

Wouifiea 26/04/26:

Hake a casa inage from channsl o
Copy the casa and fits maps to the output folder (~/images/)

} /1 workflow

process nake_inage_channel o
brocess copy_required_inages

container 'amigahun/casas.5.2'

file casa_nap
File fits_nap

/1 NOTE: the enit xeynords doesn't appear to work for type file, so T have to use type pat
avtput
/I file 'x.inager, enit: clean_inag

path '3c391_ctn_spe_b_ch_0_T.inage", enit: clean_

cp -r $casamap /home/tangerine/inages/
$¢its_map /hone/tangerine/inages/

/measuranent-sets -v.

ar run -y /none/ta 5:/scripts - /hone/tan ot
[y } 1/ copy_required_inages

11 wake_inage channel o
i workelows
Foke s RIS
Hodifiea: 26/04/2023

Hake a casa inage from channel 63 Hodified 26/6

constr Spectral index map from channels 6 and 63, and export the casa inage to fits format

Both the casa and fits maps are written to the ~/images/ directory.

Stimela:

Stimela (the IsiZulu word for a train) is a platform independent radio interferometry scripting framework based
on Python and the containerization technologies that now comes standard with all major Linux distributions.

Currently supports:
e Podman
e Docker
e Singularity
e uDocker

In this framework, radio interferometry related tasks such as imaging, calibration and data synthesis are
executed in containers.

K/
L X4

K/
L X4

The packages that perform these tasks are Python modules.

Stimela does not do any data processing, synthesis or analysis but offers a unified Pythonic interface to
packages that perform these tasks.

K/
*%

The primary aims of Stimela is to provide the following services to the Radio Astronomy community:

e Auser friendly and modular scripting environment that gives general users easy access to novel radio
interferometry calibration, imaging, and synthesis packages.

e Simplified installation and production deployment. All the software available to the Stimela user is
prebuild and available on Docker Hub.

The production environment is fixed. The versions of the interfaced software products is fixed for a particular
release version of Stimela. This means one can roll back and forward with ease and ensures that the
production environment is always verbatim with that used for the original reduction work.

Stimela is centred around two sets of images:

e Base images, which have the required software tools installed in them. The base images can either be
built locally (on the host machine) or pulled from Docker hub.

e \ery light weight executor images (a.k.a cab images) based on the base images, these perform radio
interferometry related tasks like imaging, data synthesis, and calibration. The executor images are built
locally.

Base images:

stimela/meqtrees - MeqTrees calibration/simulation tool
stimela/lwimager - Uses the casarest based lwimager tool for imaging
and deconvolution

stimela/wsclean - WSClean imaging tool

stimela/simms - Uses CASA simulate tool to create a simulated (empty)
MS

stimela/tigger - Tools for managing and manupulating analytic sky
models (Gaussian and point sources)

stimela/aoflagger - Automated RFI flagging tool

stimela/casa - CASA

stimela/lofar - Lofar

stimela/sourcery - Source finding and source characterisation tool
stimela/msutils - Convenience functions for manipulating MSs

Executors (a.k.a 'cabs'):

These images are generally pre-loaded with Python scripts that perform a specified task (e.g calibrating a
visibility dataset). A stimela cab image takes some input as well a set of instructions, performs some task, then
returns the output. The following are examples of available tasks:

cab/simms

cab/simulator

cab/calibrator

cab/lwimager

cab/wsclean
cab/tigger_convert
cab/tigger_restore
cab/tigger_tag

cab/specfit

cab/sourcery
cab/autoflagger (AOFlagger)
cab/flagms

cab/casa_{clean, gaincal, bandpass, etc.}
cab/ddfacet

cab/cubical

cab/tricolour (Tricolour)

import stimela package

import stimela
import os

Recipe I/O configuration

INPUT = "input"
OUTPUT =

This folder must exist

output”

MSDIR msdir"
PREFIX = "stimela-example" # Prefix for output images
try:

SINGULARTITY IMAGE DIR = os.environ["STIMELA SINGULARTITY_ IMAGE DIR"]
except KeyError:
SINGULARTITY_ IMAGE_DIR = None

MS name

MS = "meerkat_simulation_ example.ms"

Use the NVSS skymodel. This is natively available

LSM = "nvssldeg

Start stimela

pipeline = stimela.Recipe("Simulation Example",

.lsm.html"

Recipe instance

Recipe name
ms_dir=MSDIR,

indir=INPUT,

outdir=0UTPUT,
singularity_image_dir=SINGULARTITY_IMAGE DIR,
log_dir=os.path.join (OUTPUT, "logs"),

)

pipeline.JOB_TYPE = "singularity"

1: Make empty MS

pipeline.add("cab/simms",
"simms_example",

{

b

label="Creating MS",

Executor image to start container from
Container name
Parameters to parse to executor container

"msname" : MS,
"telescope": "meerkat", # Telescope name
"direction": "J2000,0deg, -30deg", # Phase tracking centre of observation
"synthesis": v # Synthesis time of observation
"dtime": ’ # Integration time in seconds
"750MHzZ", # Start frequency of observation
MIMHZ™, # Channel width

Number of channels

Hint: double-click to select code
Process label

cpus=2.5,
memory_limit="2gb")
#2
pipeline.add("cab/casa_listobs", "obsinfo",
{
"yis" : MS,
"listfile® MS + "-obsinfo.txt",

"overwrite"

}
label:

True,

obsinfo:: Observation information

3: Simulate visibilities into it
pipeline.add("cab/simulator",
"simulator_example",

{

"msname" MS,
"skymodel LSM, # Sky model to simulate into MS
"addnoise True, # Add thermal noise to visibilities
"column": "DATA",

"Gjones": True, # Simulated data will be saved in this column

"sefd": # Compute noise from this SEFD

Recentre sky model to phase tracking centre of MS
"tile-size": 64,
"threads": 4,
b
label="Simulating visibilities")
#
pipeline.add("cab/calibrator",
"cal_example”,

{

"msname" Ms,
"skymodel LsM,
"tile-size": 64,
"threads": 4,

"output-data" '"CORR_DATA',
1

label="Calibrating visibilities")

$# 5,6,7 : Image
Make things a bit interesting by imaging with different we.guaco
Briggs robust values to use for each image

briggs_robust = [2, 0, -2]

for i, robust in enumerate (briggs_robust) :
pipeline.add("cab/wsclean",

"imager_ example_robust_{:d}".format (i),

{

"msname": MS,
"weight £"briggs {robust}"

"prefix "{:s}_robust-{:d}".format (PREFIX, robust),
"npix": 5 # Image size in pixels
"cellsize": ’

Perform iterarions of clean (Deconvolution)
"niter": -

"mgain" ,

Tpol™ : wTe

"multiscale": True,

"multiscale-scales" : [0,2],

Y,
label="Imaging MS, robust={:d}".format (robust),

cpus=2,
memory_limit="2gb")
+
pipeline.add("cab/casa_rmtables”, "delete_ms", {
"tablenames": MS + ":msfile",
Y.
label="Remove MS")

pipeline.run ()

Hint: double-click to select code

Size of each square pixel

REGIONAL
CENTRE
NETWORK

SRC Science Analysis Platform Vision Document

de Boer, .1, Cimpan, 1.2, Das, A.3, Fabbro, S.4, Grange, Y. G.1*, Hardcastle, M. J.?,
Sharma, RS, Skipper, C. J.2, Swinbank, J. D.!, Webster, B.5

LASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4,7991 PD Dwingeloo,
The Netherlands
2 Jodrell Bank Centre for Astrophysics, Alan Turing Building, The University of Manchester, Manchester,
M13 9PL, UK
3Ecole polytechnique fédérale de Lausanne, Rte Cantonale, 1015 Lausanne, Switzerland
*NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada
5Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
6 Fachhochschule Nordwestschweiz, Bahnhofstrasse 6, 5210 Windisch, Switzerland

*corresponding author

Abstract. This document describes the vision for the Square Kilometer Array (SKA)
Regional Centres (SRC) Science Analysis Platform. It is intended to set the broad terms
of reference for the platform and to provide guidance for both development teams and
other stakeholders. Among the features and services that are expected to be included
are data querying and discovery tools, some form of notebook interface, user-managed
software environments, workflow management, and a comprehensive set of application

programming interfaces (APIs) enabling access to all low-level platform functionality.

This document is not a design specification, and the features and services described
herein will be further refined, or could be discarded, at a later stage of development.

Implementing external feedbacks in progress

~ 100 comments

