
Tangerine team update
(SKA Science Platform Prototyping)

Vision and Progress

Arpan Das(EPFL)
Rohit Sharma (FHNW)

● Brief overview of how existing workflow packages
run and how the integration tools supplied by each
workflow

● Not to give an in depth functional analysis of each
workflow package

● This analysis is designed to give a more technical
overview of how each workflow package could be
used within the SRC Net

The packages studied are:

● Nextflow
● Snakemake
● Daliuge
● CWL
● WDL
● Ruffus
● Yadage
● Stimela

Nextflow:
NextFlow uses a scripting language similar to CWL, based upon a language called 'groovy' (an extension of
java), and provides out-of-the-box executors for GridEngine, SLURM, LSF, PBS, Moab and HTCondor batch
schedulers, and for Kubernetes, Amazon AWS, Google Cloud, and MS Azure platforms.

The NextFlow application offers the following commands:

● clean - clean up a project cache and work directories
● clone - clone a project into a folder
● config - print a project configuration
● console - launch NextFlow interactive console
● drop - delete the local copy of a project
● help - print the usage help for a command
● info - print project and system runtime information
● kuberun - execute a workflow in a Kubernetes cluster (experimental)
● list - list all downloaded projects
● log - print executions log and runtime info
● pull - download or update a project
● run - execute a pipeline project
● self-update - update NextFlow runtime to the latest available version
● view - view project script file(s)

Basic Concepts
● Designed around Linux Platform for data science applications
● Linux provide many simple but powerful CL and scripting tools, when chained

together facilitate complex data manipulations
● Nextflow extends this approach, adding ability to define complex program and a

high-level parallel computational environment based on dataflow programming
model

Nextflow Pipeline Script are made by joining different processes
● Processes are executed independently and isolated from one another
● Each process can be written in any scriptable language which is executable on

Linux platform (Bash, Perl, Ruby, Python etc..)
● They do share a common writable state
● The processes can communicate via asynchronous queues, called channels
● Any Process can define one or more channels as input and output

● The pipe between the two processes forwards the output from
one process to the inputs of the following one

● Creates two processes (one for each function) and a channel
(query_ch)

● Both processes will be started at the same time and they will
listen to their respective input channels

● When processOne emit a value, processTwo will receive it

● Inside the triple quotes the user writes a bash script, which
can kick off a script in python, R, or other languages

● To use something other than bash, the first line of the script
should be #!/usr/bin/perl, or #!/usr/bin/python, etc

● To submit jobs via SLURM the process.executor in the
nextflow.config file should be 'slurm'

● NextFlow integrates with github, and if a pipeline is not found
locally by the executor it will automatically look for a public
github repository with the same name, download it, and
execute it.

Spectral Index Workflow

Nextflow
Workflow

Stimela:
Stimela (the IsiZulu word for a train) is a platform independent radio interferometry scripting framework based
on Python and the containerization technologies that now comes standard with all major Linux distributions.

Currently supports:

● Podman
● Docker
● Singularity
● uDocker

❖ In this framework, radio interferometry related tasks such as imaging, calibration and data synthesis are
executed in containers.

❖ The packages that perform these tasks are Python modules.

❖ Stimela does not do any data processing, synthesis or analysis but offers a unified Pythonic interface to
packages that perform these tasks.

The primary aims of Stimela is to provide the following services to the Radio Astronomy community:

● A user friendly and modular scripting environment that gives general users easy access to novel radio
interferometry calibration, imaging, and synthesis packages.

● Simplified installation and production deployment. All the software available to the Stimela user is
prebuild and available on Docker Hub.

The production environment is fixed. The versions of the interfaced software products is fixed for a particular
release version of Stimela. This means one can roll back and forward with ease and ensures that the
production environment is always verbatim with that used for the original reduction work.

Stimela is centred around two sets of images:

● Base images, which have the required software tools installed in them. The base images can either be
built locally (on the host machine) or pulled from Docker hub.

● Very light weight executor images (a.k.a cab images) based on the base images, these perform radio
interferometry related tasks like imaging, data synthesis, and calibration. The executor images are built
locally.

Base images:

● stimela/meqtrees - MeqTrees calibration/simulation tool
● stimela/lwimager - Uses the casarest based lwimager tool for imaging

and deconvolution
● stimela/wsclean - WSClean imaging tool
● stimela/simms - Uses CASA simulate tool to create a simulated (empty)

MS
● stimela/tigger - Tools for managing and manupulating analytic sky

models (Gaussian and point sources)
● stimela/aoflagger - Automated RFI flagging tool
● stimela/casa - CASA
● stimela/lofar - Lofar
● stimela/sourcery - Source finding and source characterisation tool
● stimela/msutils - Convenience functions for manipulating MSs

Executors (a.k.a 'cabs'):

These images are generally pre-loaded with Python scripts that perform a specified task (e.g calibrating a
visibility dataset). A stimela cab image takes some input as well a set of instructions, performs some task, then
returns the output. The following are examples of available tasks:

● cab/simms
● cab/simulator
● cab/calibrator
● cab/lwimager
● cab/wsclean
● cab/tigger_convert
● cab/tigger_restore
● cab/tigger_tag
● cab/specfit
● cab/sourcery
● cab/autoflagger (AOFlagger)
● cab/flagms
● cab/casa_{clean, gaincal, bandpass, etc.}
● cab/ddfacet
● cab/cubical
● cab/tricolour (Tricolour)

● Implementing external feedbacks in progress

● ~ 100 comments

