Towards Realistic Mock Observations

Chris Finlay, Shreyam Krishna, Michele Bianco, Tianyue Chen & Karabo Team

(Simplified) Radio Interferometric Measurement Equation

$$V_{tpq} = G_{tp} E_{tps} B E_{tqs} G_{tq} + N_t$$

- G_p Direction Independent (DI) gains for antenna p E_p Direction Dependent (DD) gains for antenna p in
 - ^L_p Direction Dependent (DD) gains for antenna p in direction s
- B Sky brightness as seen by the baseline pq
- N Additive Receiver Noise

21 CM IM/EoR Papers	Additive Noise	DI Gain Errors	DD Gain Errors
Removing Astrophysics in 21 cm Maps with Neural Networks	X	X	X
		Х	X
THE APPLICATION OF CONTINUOUS WAVELET TRANSFORM BASED FOREGROUND SUBTRACTION METHOD IN 21 cm SKY SURVEYS		Х	Х
		Х	Х
	X	Х	
Machine Learning to Decipher the Astrophysical Processes at Cosmic Dawn		Х	
		Х	X
		X	
SKAO Hi Intensity Mapping: Blind Foreground Subtraction Challenge		X	

Current State of the Art for 21 cm IM/EoR simulations

- Most do not properly incorporate the complexity of the radio interferometric signal capture process
- Additive Noise System Equivalent Flux Density (SEFD)
- Where incorporated DD effects are mostly including gaussian primary/synthesized beams
- No cross-polarisation leakage only xx and yy components usually identical

Additive Noise Model

$$\Delta S = \frac{2kT_{sys}}{A_e\sqrt{2N_{pol}\Delta v\Delta t}}$$

- Independent over all dimensions
- Increasing noise buries signal
- Reduce noise with more data
 - Antennas
 - \circ Time integration
 - Antennas
 - \circ Channel width

Direction Independent Gain Model

$$1 + q_{\nu i} = (1 + h_{\nu} + p_i + \delta_{\nu i})e^{2\pi i(\nu \tau_i + \epsilon_{\nu i})}$$

- h_{v} Band pass error
- p_i^{ν} Antenna dependent error $\delta_{\nu i}$ Statistical amplitude error
- τ_{i} Antenna phase error
- ϵ_{vi} Statistical phase error

$$1 + q_{\nu i} = (1 + h_{\nu} + p_i + \delta_{\nu i})e^{2\pi i (
u au_i + \epsilon_{\nu i})}$$

$$1 + G_{pq} = \operatorname{Gain}_{p} x \operatorname{Gain}_{q}$$

DI Gain Amplitude and Phase Errors

• Varies over time and frequency

Gain Amplitudes

• Amplitudes modulate signal strength

Gain Phases

- Phase errors defocus the telescope
- Spread out the signal

Direction Dependent Gain Model

Ionosphere

• Varies space, time and frequency

For wide FoV

• Different across the FoV

For large arrays

• Each antenna sees a different sky

Primary Beam

- Directional sensitivity of antenna/station to different polarised components
- Most radio telescopes have finite, non-zero polarisation leakage
- Can cause synchrotron sources to overpower cosmological 21 cm signal

Asad et al 2019

MeerKlass cross-correlation Single dish Intensity Mapping 10.5 hours (6 nights) overlapping with the WiggleZ 11hr field (~200 sq. deg.) 973 - 1015 MHz (0.40 < z < 0.46)

30 PCA components removed v/s 8 in simulations

Wang 2021, Cunnington 2022

mΚ

R.A [deg]

170

180

0.04

0.02

160

-0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00

150

MeerKAT auto-correlation Single Dish Intensity Mapping

Conclusion

- State of 21 cm simulations nowhere close to observations.
- Modelling instrumental effects essential 0.02% calibration error = contaminant order of magnitude larger than signal AFTER removal
- More complex effects time varying primary beam, different primary beam for different antennas, coloured noise, gain drift

