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☛ Synthesis imaging in radio astronomy
From CLEAN to uSARA & AIRI algorithms

☛ R2D2 algorithm:
A newborn DNN series approach
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Synthesis imaging in radio astronomy
From CLEAN to uSARA & AIRI algorithms
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4 / 19Aperture synthesis by radio interferometry
Aperture synthesis by radio interferometry (RI) provides access to high resolu-
tion high-dynamic range. But forming an image x̄ from visibility data y is an
ill-posed inverse problem.

▶ The data provide an incomplete Fourier sampling of the sky, leading
to a deconvolution problem:

y = Φx̄ + n

▶ Reconstruction algorithms are needed, leveraging a prior image
model to regularise and solve the problem:

y → x̄

▶ Accurate image models are needed for precision (i.e. high
resolution and high dynamic range)



5 / 19The Square Kilometre Array
SKA will target unprecedented resolution and sensitivity regimes, leading to EB
data volumes and PB wide-band image sizes.

Image credit SKA organisation

▶ Reconstruction algorithms must be scalable



6 / 19Celebrated CLEAN
The standard CLEAN algorithm is a greedy matching pursuit algorithm, itera-
tively identifying model components from back-projected data residuals.

▶ Write backprojected data as convolution of x̄ with PSF Re{Φ†Φ}δ:

xdirty = κRe{Φ†y} ≃ κRe{Φ†Φ}δ ⋆ x̄ + n′

with κ = 1/ max(Re{Φ†Φ}δ)
▶ CLEAN iteration structure (peeling bright sources in residual image):

x(i) = x(i−1) + T
(

xdirty − κRe{Φ†Φ}x(i−1)
)

with T peeling operator implicitly enforcing a sparse image model
▶ Simplistic model: scalable, but limiting precision
▶ RI image reconstruction is to be reinvented



7 / 19Powerful optimisation framework
Convex optimisation provides a powerful framework to solve inverse problems
via iterative algorithms.

▶ Image reconstruction formulated as a convex optimisation problem:

x⋆ ∈ argmin
x

{
g(x; y) = f (x; y) + r(x)

}
with f (x; y): data-fidelity term; r(x): regularisation term

▶ The theory is robust and versatile:

✓ algorithms endowed with convergence guarantees
✓ advanced regularisation enables precision
✓ parallel algorithmic structures enable scalability



8 / 19Forward-Backward algorithm
The Forward-Backward (FB) algorithm is a simple and flexible optimisation
structure.

▶ FB minimisation task:

x⋆ ∈ argmin
x

{
g(x; y) = f (x; y) + r(x)

}
with f (x; y): differentiable; r(x): differentiable or not

▶ FB iteration structure:

x(i) = proxγr
(
x(i−1) − γ∇f

(
x(i−1)))

with γ < 2/L(∇f )
✓ forward gradient-descent data-fidelity step
✓ backward regularisation step involving proxγr

✓ the proximal operator proxγr is an image denoiser



9 / 19Unconstrained SARA (uSARA)
Unconstrained SARA leverages FB with handcrafted regularisation for
monochromatic intensity imaging.

▶ Data fidelity term: f (x, y) = ||y − Φx||22 (Gaussian noise)
▶ Regularisation term: log-sum prior (generalising ℓ1) promoting

average sparsity in a redundant wavelet dictionary

r(x) = η
∑B

b=1 ρ log
(

1 + ρ−1
∣∣∣(Ψ†x

)
b

∣∣∣) + ιRN
+
(x)

▶ uSARA iteration structure:

x(i) = proxγr

(
x(i−1) + γRe{Φ†y} − γRe{Φ†Φ}x(i−1)

)
with γ < 2/∥Re{Φ†Φ}∥S

▶ uSARA’s proximal operator is iterative, affecting scalability



10 / 19AI for Regularisation in Imaging (AIRI)
AIRI leverages FB, plugging a learned DNN denoiser in lieu of a proximal oper-
ator for monochromatic intensity imaging, in a plug-and-play (PnP) approach.

▶ Data fidelity term: f (x, y) = ||y − Φx||22 (Gaussian noise)
▶ Regularisation term: implicitly defined by a learned DNN denoiser J

▶ AIRI iteration structure:

x(i) = J
(

x(i−1) + γRe{Φ†y} − γRe{Φ†Φ}x(i−1)
)

with γ < 2/∥Re{Φ†Φ}∥S

▶ Learning opens the door to powerful physical regularisation
▶ DNNs provides acceleration over sub-iterative proximal operators
▶ Denoisers blind to Φ, but requires a tailored training approach...



11 / 19AIRI & uSARA for ASKAP imaging
“Dancing ghosts” reconstruction from wide-field ASKAP data.

▶ CLEAN (0.9GHz, 7GB data, 4k x 4k pixels, 58 CoreH):



11 / 19AIRI & uSARA for ASKAP imaging
“Dancing ghosts” reconstruction from wide-field ASKAP data.

▶ uSARA (0.9GHz, 7GB data, 4k x 4k pixels, 770 CoreH):



11 / 19AIRI & uSARA for ASKAP imaging
“Dancing ghosts” reconstruction from wide-field ASKAP data.

▶ AIRI (0.9GHz, 7GB data, 4k x 4k pixels, 203 CoreH):



12 / 19A scalability challenge remains

AIRI & uSARA algorithms are highly iterative, which
fundamentally limits their scalability.



12 / 19A scalability challenge remains
End-to-end DNNs, though suffering from generalisation issues, remain appeal-
ing as they provide almost real-time reconstruction from the dirty image.

G

▶ DNN input: xdirty = κRe{Φ†y}

with κ = 1/ max(Re{Φ†Φ}δ)

▶ DNN output: x⋆ = G(xdirty)

▶ Existing DNNs do not match the precision of uSARA or AIRI.
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R2D2 algorithm:
from DNN series to astronomical imaging

Aghabiglou et al., Proc. ICASSP 2023, arXiv:2210.1606

Aghabiglou et al., ApJL, in prep.

Aghabiglou et al., MNRAS, in prep.



14 / 19Star Wars hidden fact
Did you know R2D2 stands for Residual-to-Residual DNN series for high-
Dynamic range imaging?

Star Wars: Episode I – The Phantom Menace (1999)



15 / 19R2D2: a learned version of matching pursuit
R2D2 applies end-to-end DNNs iteratively, each network taking the residual
dirty image of the previous iteration as an input, and reconstructing the residual
between the ground truth and the reconstruction of the previous iteration.

▶ R2D2 iteration structure:

x(i) = x(i−1) + G(i) (
r (i−1))

with r (i−1) = xdirty − κRe{Φ†Φ}x(i−1)

▶ “Series” expression for x(I):

x⋆ = x(I) =
∑I

i=1G(i)(r (i−1))

▶ Training losses for G(i) sequence:

min
θ

1
L

∑L
ℓ=1∥G(i)

θ (r (i−1)
ℓ ) + x(i−1)

ℓ − x̄ℓ∥1



15 / 19R2D2: a learned version of matching pursuit
R2D2’s high-dynamic range networks are trained from low-dynamic range
databases, with an advanced network architecture.

▶ Creating a high-dynamic range database by exponentiating
low-dynamic range astronomical and medical image datasets:

Low-dynamic range
database

✓ artefacts removal

✓ size adjustment

✓ exponentiation

Pre-processing High-dynamic range
database



15 / 19R2D2: a learned version of matching pursuit
R2D2’s high-dynamic range networks are trained from low-dynamic range
databases, with an advanced network architecture.

▶ New U-WDSR architecture combining U-Net and WDSR:
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16 / 19R2D2 trained for VLA: quantitative simulation results
Quantitative metrics confirm R2D2 brings the same precision as AIRI and uS-
ARA... at a fraction of the cost.

▶ Simulation results:

Model SNR(dB) logSNR(dB) time(s.) iteration #
CLEAN 13.3±0.1 14.3±0.4 99±4 4.8 ±0.2∗1

uSARA 25.3±0.2 25.5±0.1 4419±111 2299±34
AIRI 27.4±0.3 28.7±0.2 3349±159 6000∗2

U-WDSR 18.5±0.3 11.5±0.4 1.0±0.2 1
R2D2 26.8±0.4 27.3±0.3 9.8±0.6 10∗3

Table: Average metrics and 95% confidence intervals, over a test dataset of 150 inverse problems. Training and
test are for 512 x 512 images, VLA sampling with [0.2,2] million data points, Briggs weighting, with varying noise
level and super-resolution factor 1.5.

∗1: Number of “major cycles”
∗2: Maximum iteration number systematically reached
∗3: After x(4) the results are generated by repeating G(4) multiple times.



17 / 19R2D2 trained for VLA: visual simulations results
Reconstruction results from simulated observations of the 3C353 source.

▶ Model evolution across iterations:

x(1) G(1)(r (0)) r (0)

Log scale visualisation Log scale visualisation Linear scale visualisation



17 / 19R2D2 trained for VLA: visual simulations results
Reconstruction results from simulated observations of the 3C353 source.

▶ Model evolution across iterations:

x(2) G(2)(r (1)) r (1)

Log scale visualisation Linear scale visualisation Linear scale visualisation



17 / 19R2D2 trained for VLA: visual simulations results
Reconstruction results from simulated observations of the 3C353 source.

▶ Model evolution across iterations:

x(10) G(4)(r (9)) r (9)

Log scale visualisation Linear scale visualisation Linear scale visualisation



18 / 19R2D2 trained for VLA: real data imaging
Cygnus A reconstruction results from real VLA observations.

▶ Dirty image (2.05GHz, 20MB data, 512 x 512 pixels):



18 / 19R2D2 trained for VLA: real data imaging
Cygnus A reconstruction results from real VLA observations.

▶ CLEAN (2.05GHz, 20MB data, 512 x 512 pixels):



18 / 19R2D2 trained for VLA: real data imaging
Cygnus A reconstruction results from real VLA observations.

▶ uSARA (2.05GHz, 20MB data, 512 x 512 pixels):



18 / 19R2D2 trained for VLA: real data imaging
Cygnus A reconstruction results from real VLA observations.

▶ AIRI (2.05GHz, 20MB data, 512 x 512 pixels):



18 / 19R2D2 trained for VLA: real data imaging
Cygnus A reconstruction results from real VLA observations.

▶ U-WDSR (2.05GHz, 20MB data, 512 x 512 pixels):



18 / 19R2D2 trained for VLA: real data imaging
Cygnus A reconstruction results from real VLA observations.

▶ R2D2 (2.05GHz, 20MB data, 512 x 512 pixels):



19 / 19Conclusion & future work

Hybrid algorithms at the interface of optimisation and deep learning can offer
a new regime of quality and speed in large-scale high-resolution high-dynamic
range computational imaging in radio astronomy, possibly paving the way to-
wards near-real time imaging.

Ongoing and future AIRI and R2D2 evolutions:

☛ Investigate advanced AIRI and R2D2 DNN architectures and losses

☛ Investigate R2D2 convergence, robustness, generalisability

☛ Add calibration, uncertainty quantification, and other functionalities

☛ Translate current Matlab code into C++ (Puri-Psi on GitHub)


	☛ Synthesis imaging in radio astronomy  0.1cm From CLEAN to uSARA & AIRI algorithms
	☛ R2D2 algorithm:   0.1cm A newborn DNN series approach

