PolyCLEAN A Polyatomic CLEAN-like algorithm \mathbf{O}

 \mathbb{N}

 \bigcirc

Adrian Jarret <u>PhD Student</u> @EPFL

for sparse Bayesian imaging

Swiss SKA Days 2023

 \bigcirc

 ${ \bigcirc }$

Background

Radio Interferometry and the CLEAN realm

O2 MAP estimation

 \star

 \star

Optimization problems and numerical challenges

O3 PolyCLEAN

Convex optimization solved in an atomic manner

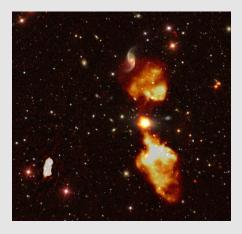
Demonstration

Performances and experimental reconstructions

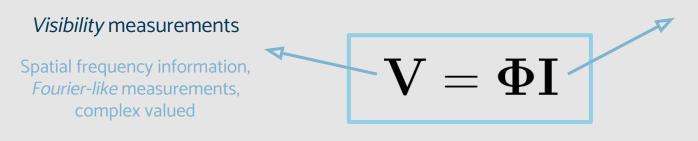
$$\mathbf{V} = \mathbf{\Phi} \mathbf{I}$$

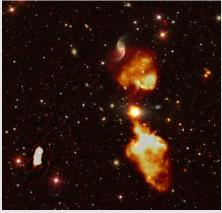
$\mathbf{V} = \mathbf{\Phi}\mathbf{I}$

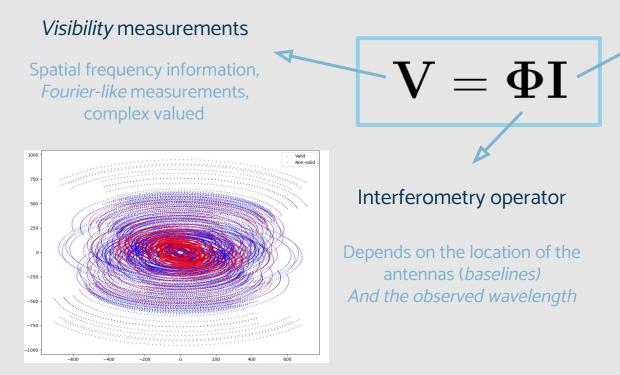
Observed area of the sky



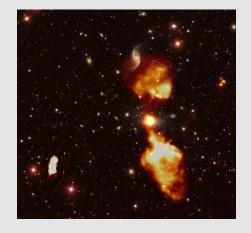
Observed area of the sky

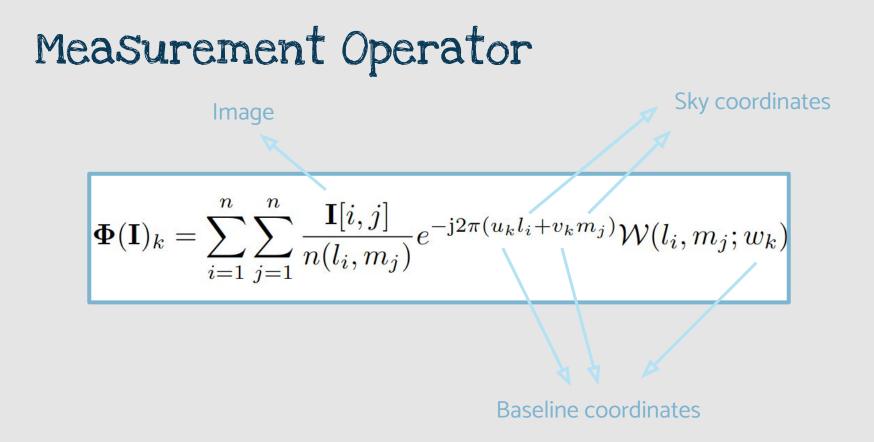




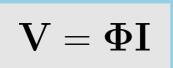


Observed area of the sky





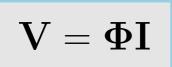
Challenges of RI



• Noisy measurements

 $\mathbf{V} = \mathbf{\Phi}\mathbf{I} + \boldsymbol{\varepsilon}$

Challenges of RI



- Noisy measurements $\mathbf{V} = \mathbf{\Phi}\mathbf{I} + oldsymbol{arepsilon}$
- Ill-posed problem

$$\operatorname{Null}(\mathbf{\Phi}) \neq \{0\}$$

 $\mathbf{V} = \mathbf{\Phi}\mathbf{I}$

Challenges of RI

- Noisy measurements
- Ill-posed problem

$$\mathbf{V} = \mathbf{\Phi}\mathbf{I} + \boldsymbol{\varepsilon}$$

 $\mathrm{Null}(\mathbf{\Phi}) \neq \{0\}$

Use of priors for reconstruction!

 $\mathbf{V} = \mathbf{\Phi}\mathbf{I}$

Challenges of RI

- Noisy measurements
- Ill-posed problem

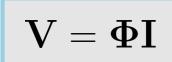
$$\operatorname{Null}(\mathbf{\Phi}) \neq \{0\}$$

 $V = \Phi I + \varepsilon$

Use of priors for reconstruction!

• Huge volumes of data

The CLEAN Algorithm



Parametric shape of the solutions

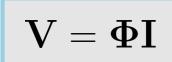
 $\left|\mathbf{I}^*[n]\right| = \sum_k \alpha_k g(n - n_k)$

Matching Pursuit Algorithm

Iterative atomic updates $\mathbf{I}^{(k+1)} \leftarrow \mathbf{I}^{(k)} + \alpha \mathbf{g}(\cdot - n_k)$

Empirical sparsity along iteration

The CLEAN Algorithm



Parametric shape of the solutions

$$\mathbf{I}^*[n] = \sum_k \alpha_k \delta(n - n_k)$$

Point sources

Matching Pursuit Algorithm

Iterative atomic updates $\mathbf{I}^{(k+1)} \leftarrow \mathbf{I}^{(k)} + \alpha \mathbf{g}(\cdot - n_k)$

Empirical sparsity along iteration

The Algorithm

Algorithm 1 Högbom CLEAN Algorithm (Major cycles only)

Parameters : k_{max} (iterations), $\alpha > 0$ (gain)

Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \, \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

for $k = 1, 2, \cdots, k_{\text{max}}$ do

1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} - \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$

2. Find the location of the next reconstructed source: $s^{(k)} = \arg \max_{(i,j)} \left| \mathbf{I}_{R}^{(k)}[i,j] \right|$

3. Update the iterate: $\mathbf{I}^{(k)} = \mathbf{I}^{(k-1)} + \alpha(\max \mathbf{I}_R^{(k)}) \boldsymbol{\delta}_{s^{(k)}}$ end for

Output:

Postprocess $\mathbf{I}^{(k)}$ (convolution with synthetic beam, add residual image)

CLEAN-Like methods

0

প্র

✓ Atomic method (scalable)

0

✔ A lot of hacks and tips to make them very fast

✔ Developed and maintained by the astronomers

✓ Long date expertise

✓ Calibration-compliant

CLEAN-Like methods (continued)

✓ Atomic method (scalable)

0

- ✔ A lot of hacks and tips to make them very fast
- Developed and maintained by the astronomers
- ✓ Long date expertise
- ✓ Calibration-compliant

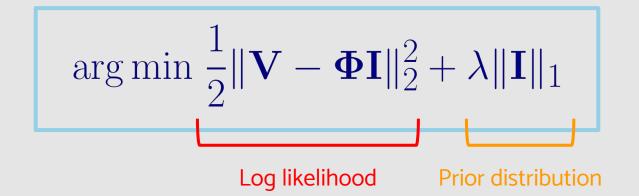
- Only denoising = enforcing
 the prior model
- \mathbf{X} Very sensitive to stop
- \mathbf{X} Objective function unclear

A

Bayesian MAP Estimation

A principled way to introduce prior information

LASSO as a MAP estimator



- Convex optimization methods
- Sparse solutions => Well suited for **Point Sources**

Sparse Dictionary reconstruction

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{2} \| \mathbf{V} - \boldsymbol{\Phi} \boldsymbol{\Psi} \boldsymbol{\theta} \|_{2}^{2} + \lambda \| \boldsymbol{\theta} \|_{1}$$

$$oldsymbol{\Psi} \in \mathbb{R}^{N imes M}$$
 Dictionary synthesis operato $oldsymbol{ heta} \in \mathbb{R}^M$ Dictionary coefficients

Optimizationmethods

0

- ✔ Denoising (with only one parameter!)
- Excellent reconstruction quality demonstrated
- Can handle very complex priors
- ✔ Fast principled algorithms

Optimization methods (continued)

0

- Denoising (with only one parameter!)
- Excellent reconstruction quality demonstrated
- Can handle very complex priors
- ✔ Fast principled algorithms

Completely different
 implementation paradigm
 (proximal method)

- \mathbf{X} Memory scalability
- \mathbf{X} Non calibration-compliant
- Shrinkage of the reconstructed intensity

Convex optimization for RA enabled with an atomic method

PolyCLEAN

•

*

•

⋇

\$

0

Penalty-based prior

0

M

0

2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

3. Focus on scalability

A

Sparsity-informed computations with Pycsou and NUFFT

0

Penalty-based prior

0

M

0

2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

3. Focus on scalability

A

Sparsity-informed computations with Pycsou and NUFFT

0

Penalty-based prior

0

M

0

2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

A

3. Focus on scalability

Sparsity-informed computations with Pycsou and NUFFT

0

Penalty-based prior

0

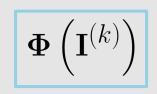
M

0

2. Atomic behavior

CLEAN-like algorithmic structure and minor cycles

A



3. Focus on scalability

Sparsity-informed computations with Pycsou and NUFFT

Algorithm 2 PolyCLEAN

Initialisation : $\mathbf{I}^{(0)} = \mathbf{0}, \ \mathcal{S}^{(0)} = \operatorname{Supp}(\mathbf{I}^{(0)}) = \emptyset, \ \mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

while stopping_criterion $(\mathbf{I}^{(k)})$ not reached do

- 1. Compute the dirty residual: $\mathbf{I}_{R}^{(k)} = \mathbf{I}_{D} \mathbf{\Phi}^{*} \mathbf{\Phi} \mathbf{I}^{(k-1)}$
- 2. Place many candidate sources: $s_1^{(k)}, s_2^{(k)}, \dots = \texttt{highest_level_set}(\mathbf{I}_R^{(k)})$ Update active set : $\mathcal{S}^{(k)} \leftarrow \mathcal{S}^{(k-1)} \cup \{s_1^{(k)}, s_2^{(k)}, \dots\}$

3. Update the iterate:

$$\mathbf{I}^{(k)} = \underset{\substack{\operatorname{Supp}(\mathbf{I}) \subset \mathcal{S}^{(k)}\\\mathbf{I} \ge 0}}{\operatorname{arg\,min}} \frac{1}{2} \left\| \mathbf{V} - \mathbf{\Phi} \mathbf{I} \right\|_{2}^{2} + \lambda \left\| \mathbf{I} \right\|_{1}$$
(R)

۲

 \mathbf{A}

۲

end while

- \rightarrow Low memory requirement
- \rightarrow Simple model
- \rightarrow Fast computation
- NU Fourier Transform: Type II -> Type III

Symbiosis with HVOX

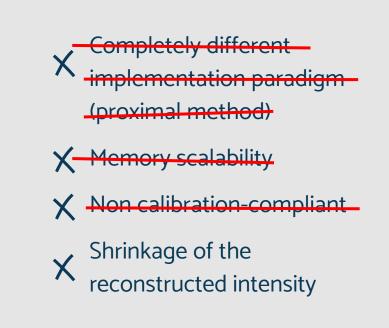
۲

۲

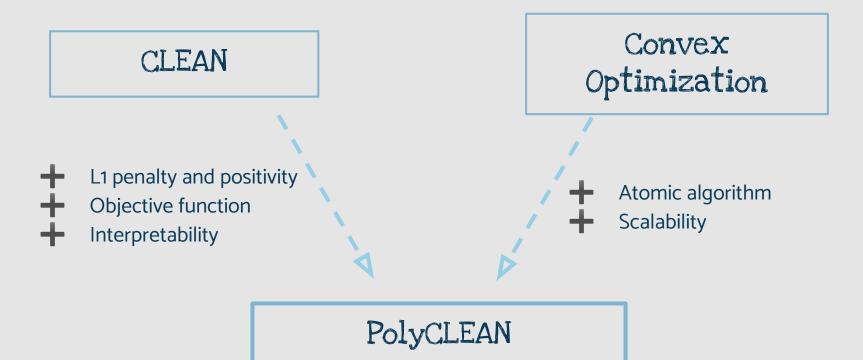
×

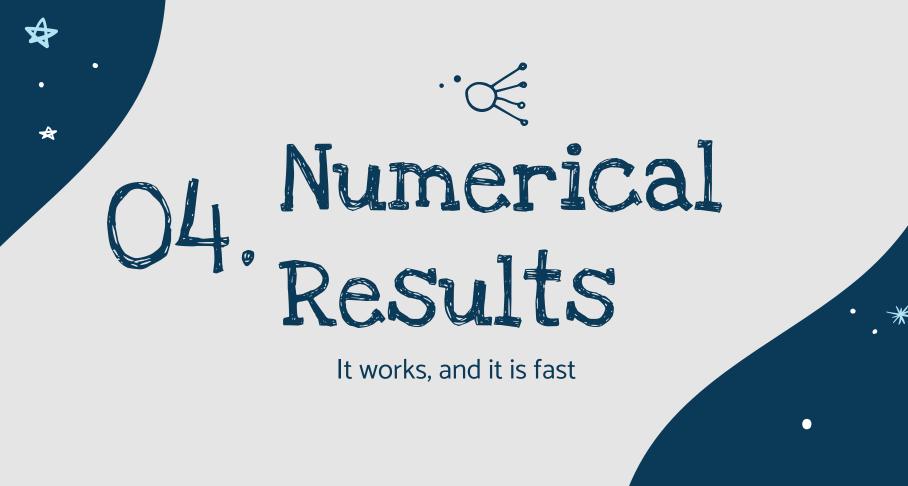
Optimization methods (continued)

- Denoising (with only one parameter!)
- Excellent reconstruction quality demonstrated
- Can handle very complex priors
- ✔ Fast principled algorithms



The Landscape of Methods





1. Pick an interferometer radius and image size

- 1. Pick an interferometer radius and image size
- 2. Simulate a source sky image

- 1. Pick an interferometer radius and image size
- 2. Simulate a source sky image
- 3. Simulate a measurement set

- 1. Pick an interferometer radius and image size
- 2. Simulate a source sky image
- 3. Simulate a measurement set
- 4. Solve with LASSO solvers:
 - a. PolyCLEAN
 - b. APGD
 - c. MonoFW

Performance benchmark

- 1. Pick an interferometer radius and image size
- 2. Simulate a source sky image
- 3. Simulate a measurement set
- 4. Solve with LASSO solvers:
 - a. PolyCLEAN
 - b. APGD
 - c. MonoFW
- 5. Solve with WS-CLEAN

Performance benchmark

- 1. Pick an interferometer radius and image size
- 2. Simulate a source sky image
- 3. Simulate a measurement set
- 4. Solve with LASSO solvers:
 - a. PolyCLEAN
 - b. APGD
 - c. MonoFW
- 5. Solve with WS-CLEAN
- 6. Compare reconstruction time

Performance benchmark

- 1. Pick an interferometer radius and image size
- 2. Simulate a source sky image
- 3. Simulate a measurement set
- 4. Solve with LASSO solvers:
 - a. PolyCLEAN
 - b. APGD
 - c. MonoFW
- 5. Solve with WS-CLEAN
- 6. Compare reconstruction time

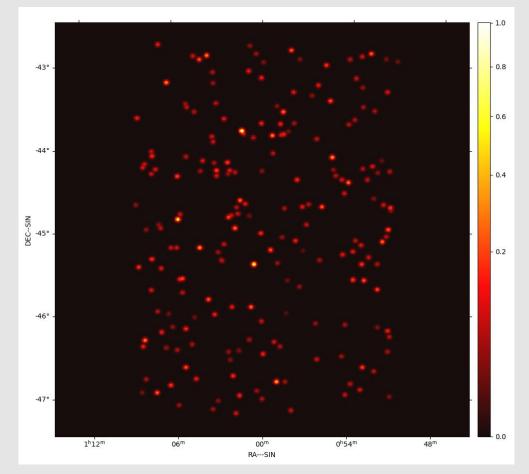
Largest measured frequency \checkmark Image size (in px) \checkmark Pixel size \checkmark \rightarrow Observe scalability

Simulated Source image

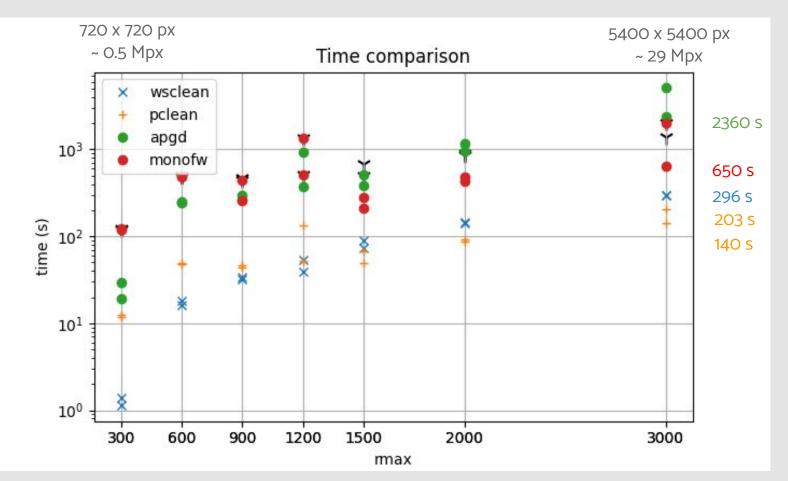
200 point sources

5° x 5° FOV

Image size: 720 -> 5400 pixels



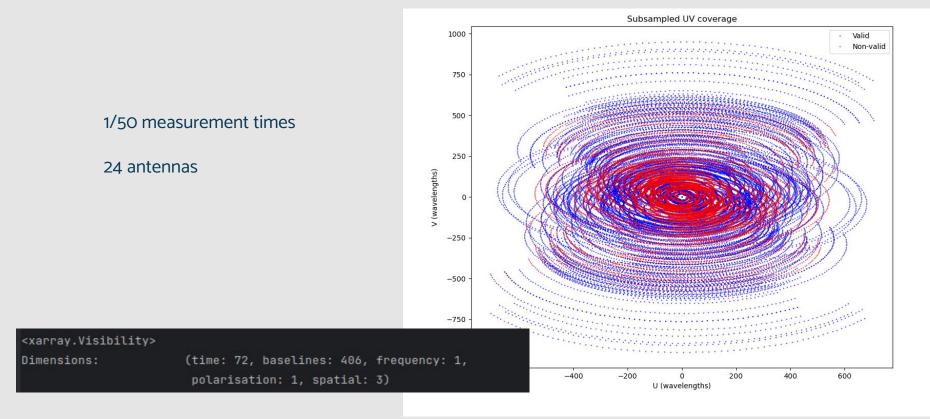
Reconstruction benchmark



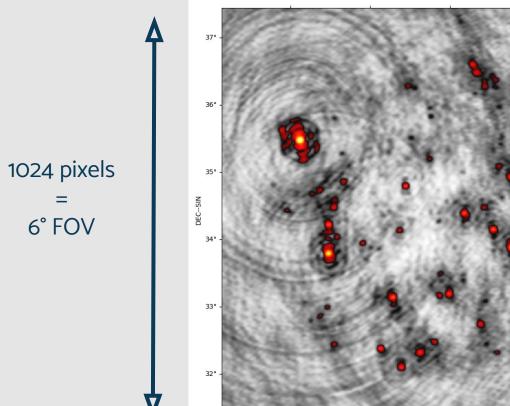
Real world measurement

<xarray.visibility></xarray.visibility>					
Dimensions:	(time: 3595, baselines: 1953, frequency: 1, ~ 400 MB polarisation: 1, spatial: 3)				
Coordinates:					
* time	(time) float64 4.914e+09 4.914e+09 4.914e+09				
* baselines	(baselines) object MultiIndex				
* antenna1	(baselines) int64 0 0 0 0 0 0 0 58 59 59 59 60 60 61				
* antenna2	(baselines) int64 0 1 2 3 4 5 6 61 59 60 61 60 61 61				
* frequency	(frequency) float64 1.458e+08				
<pre>* polarisation</pre>	(polarisation) <u1 'i'<="" td=""></u1>				
* spatial	(spatial) <u1 'u'="" 'w'<="" td=""></u1>				

Selection of antennas



Dirty image - Point sources



14^h42^m

36^m

30^m

RA---SIN

24^m

 $\mathbf{I}_D = \mathbf{\Phi}^* \mathbf{V}$

- 300

- 200

100

0

-100

-200

-300

4000

- 3000

- 2000

- 1000

- 500

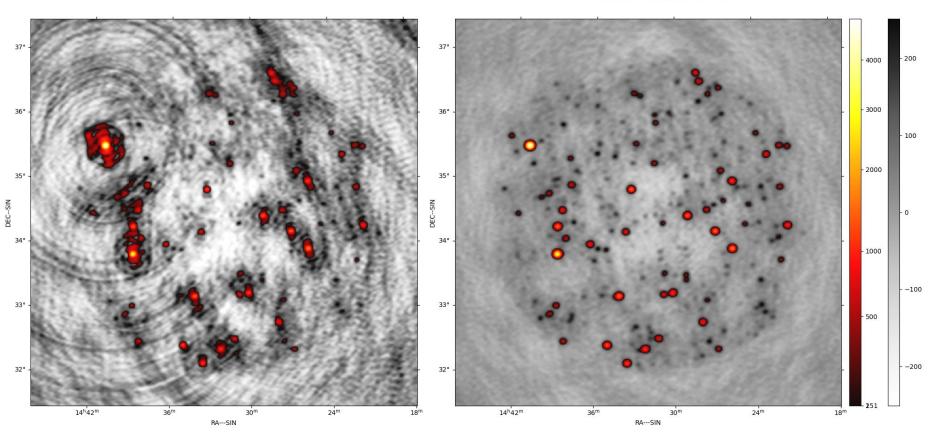
331

18^m

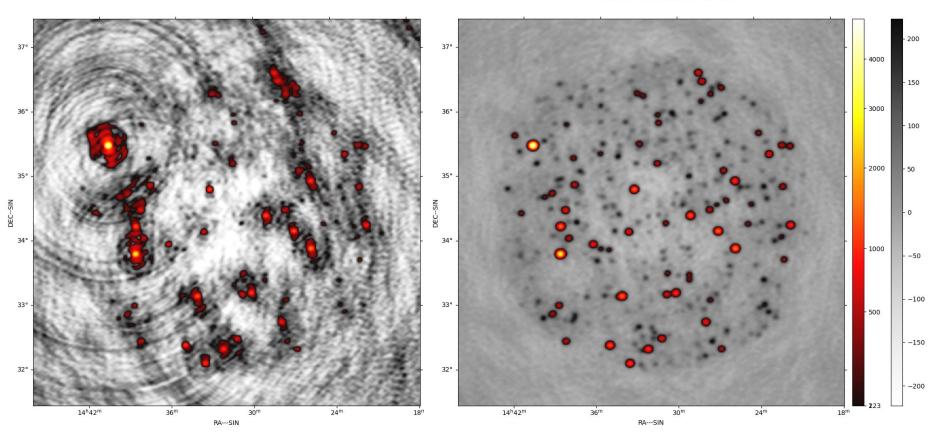
Reconstruction parameters

Auto-threshold parameter Penalt	lty parameter
3 σ 5% 2 σ 2% 1 σ 0.5%	

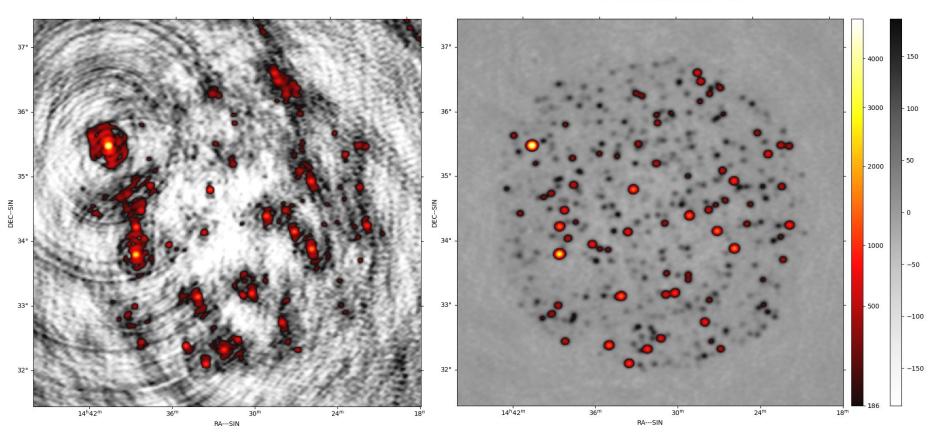
Dirty image



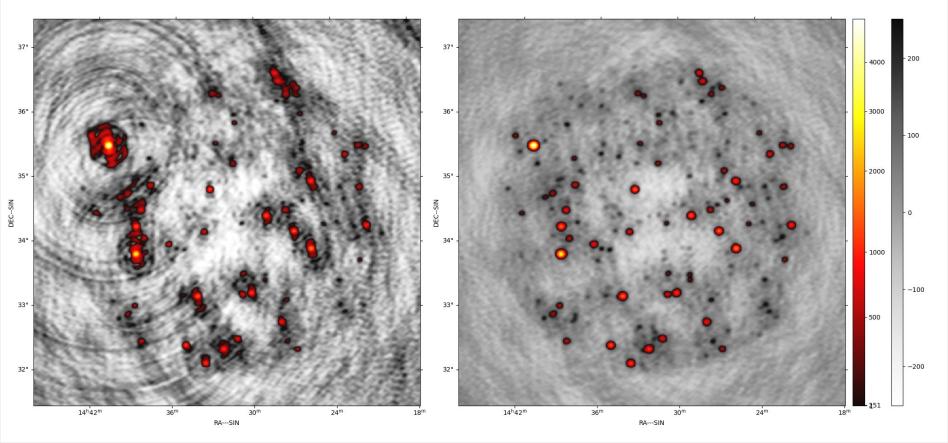
Dirty image



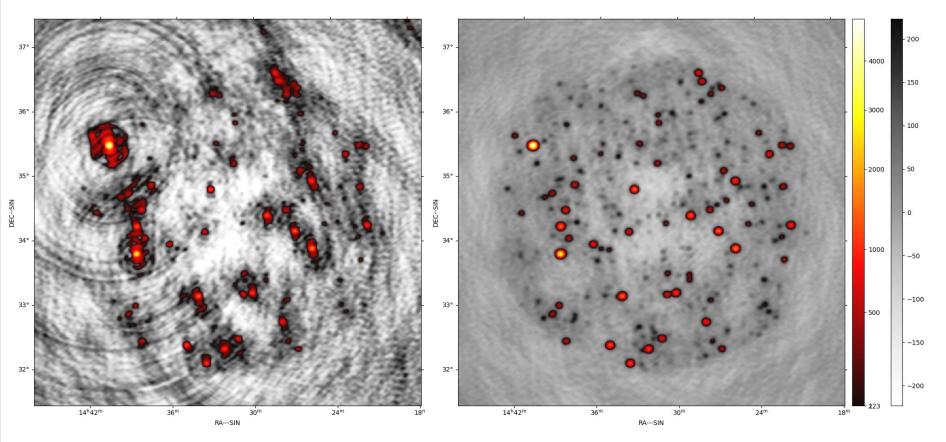
Dirty image



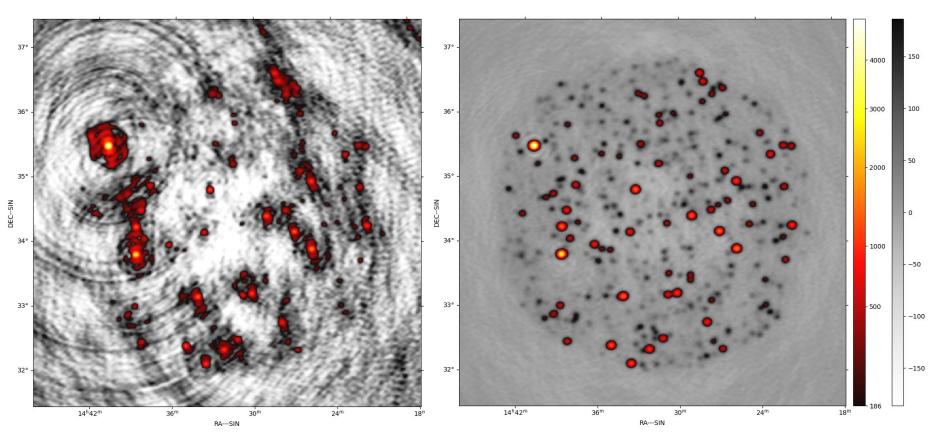
Dirty image



Dirty image



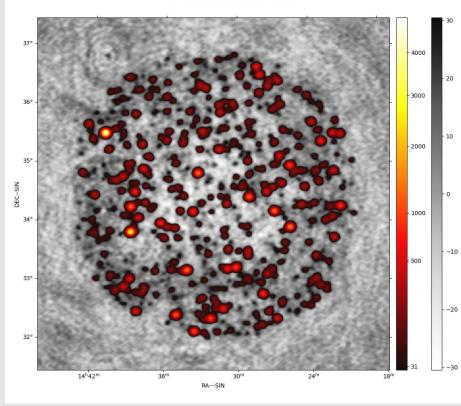
Dirty image

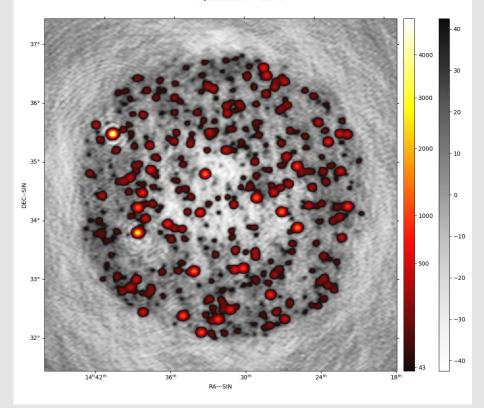


Longest deconvolution example

WS-CLEAN: 1 auto-threshold - 10.79s

PolyCLEAN 0.005 - 57.48s





Dual certificate

Definition:

$$\mu_{\lambda} = \frac{1}{\lambda} \Phi^* (\mathbf{V} - \Phi \mathbf{I}^*)$$

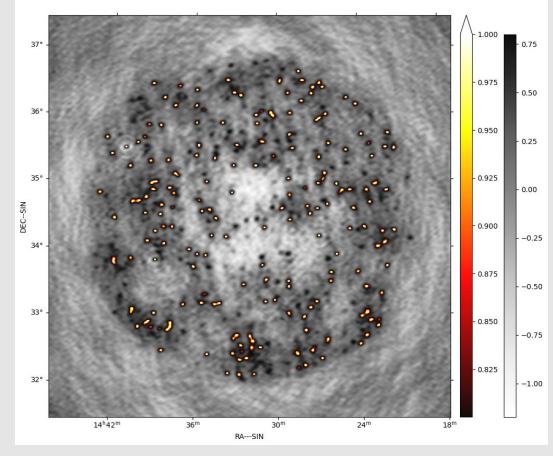
Properties:

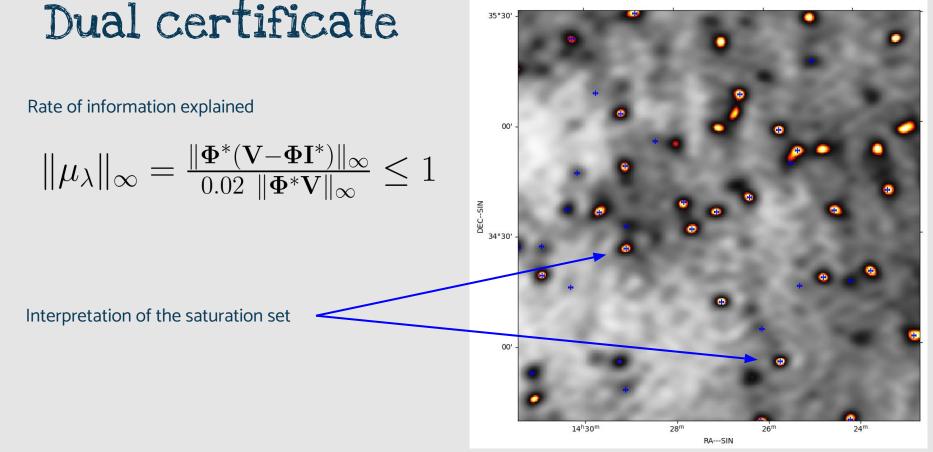
$$\|\mu_{\lambda}\|_{\infty} \leq 1$$
$$\langle \mu_{\lambda}, \mathbf{I}^* \rangle = \|\mathbf{I}^*\|_1$$

Usages:

- Convergence
- Saturation set

Dual certificate image - maximum value: 1.172

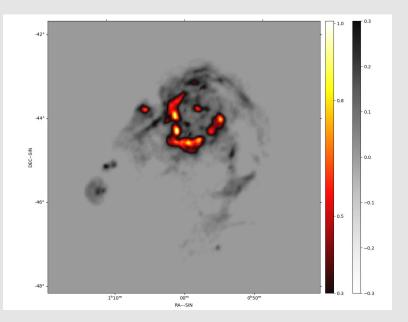




Extended sources: simulations

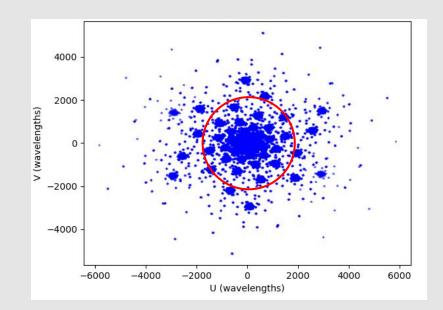
M31 image:

6.5 degrees -> 256 pixels / side



Baselines:

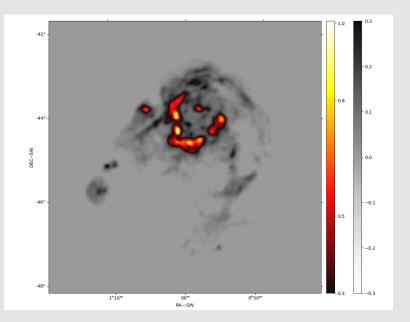
rmax = 1000m -> 31500 baselines



Extended sources: simulations

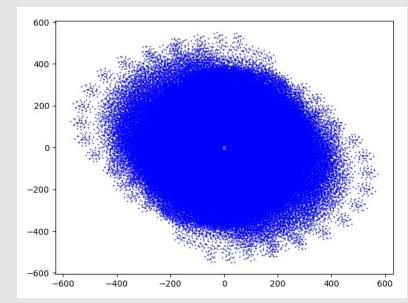
M31 image:

6.5 degrees -> 256 pixels / side



Baselines:

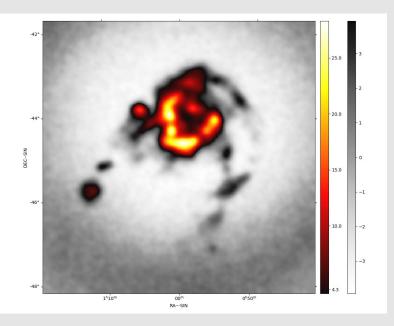
rmax = 1000m -> 31500 baselines, 11 measurement times



Extended sources: simulations

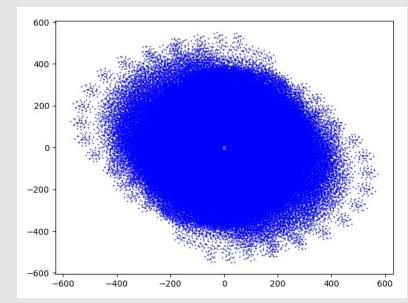
M31 image:

6.5 degrees -> 256 pixels / side

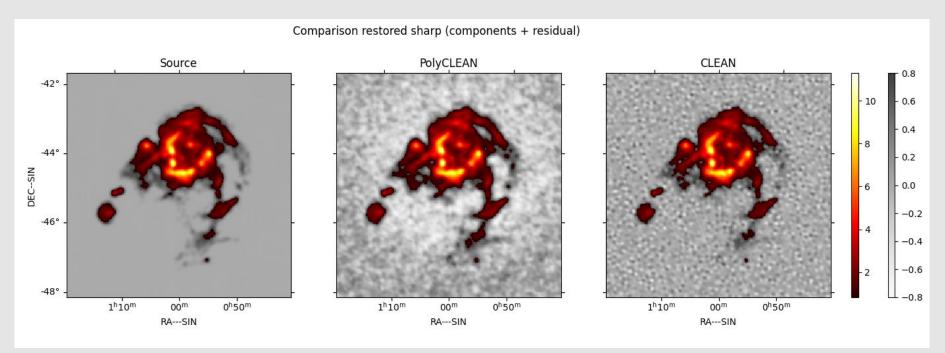


Baselines:

rmax = 1000m -> 31500 baselines, 11 measurement times

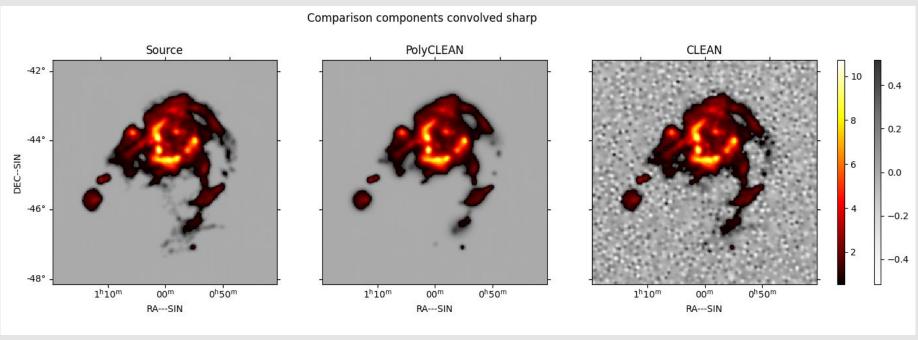


Reconstructions



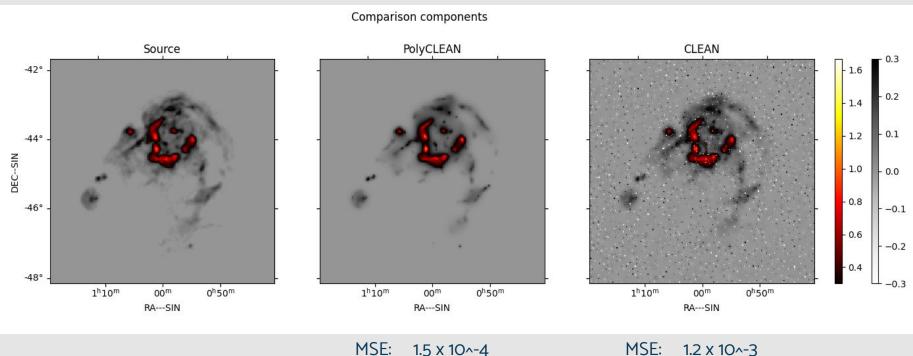
MSE: 5.5 x 10^-2 MAD: 1.9 x 10^-1 MSE: 1.4 x 10^-2 MAD: 8.9 x 10^-2

Reconstructions (without res.)



MSE: 1.2 x 10^-2 MAD: 4.6 x 10^-2 MSE: 1.0 x 10^-2 MAD: 7.5 x 10^-2

Reconstructions (model)



MAD: 4.3 x 10^-3

MSE: 1.2 x 10^-3 MAD: 1.2 x 10^-2

Summary

1. Numerical performance

- Scalability achievement
- Optimization method up to speed with atomic method
- Sparsity-based method

2. Versatility

- Adaptable:
 - Tune the parameters
 - Fine control
- Point and extended sources

★

- 3. Ongoing research work
- **Dual certificate**: promising new scientific tool for RI image reconstruction
- Room for improvement in the code as well as in the algorithm
- Bayes estimation of the parameters

Thanks!

	CLEAN	MAP Estimation	PolyCLEAN
Sparse iterates	\checkmark	×	
Flexible priors	~	\checkmark	~
Fast solvers	\checkmark	~	
Calibration compliant	\checkmark	X	
Interpretable obj. function	X	\checkmark	\checkmark

Multi-scales dictionaries

Redundant dictionary:

$$\boldsymbol{\Psi} = [\boldsymbol{\Psi}_1 \dots \boldsymbol{\Psi}_D] \quad \in \mathbb{R}^{N \times DN}$$

Multi-scales dictionaries

Redundant dictionary:

Gaussian kernels:

$$\boldsymbol{\Psi} = [\boldsymbol{\Psi}_1 \dots \boldsymbol{\Psi}_D] \in \mathbb{R}^{N \times DN}$$

• Wavelets: $\mathbf{\Psi}_d = \mathbf{W}_d$ $\in \mathbb{R}^{N imes N}$

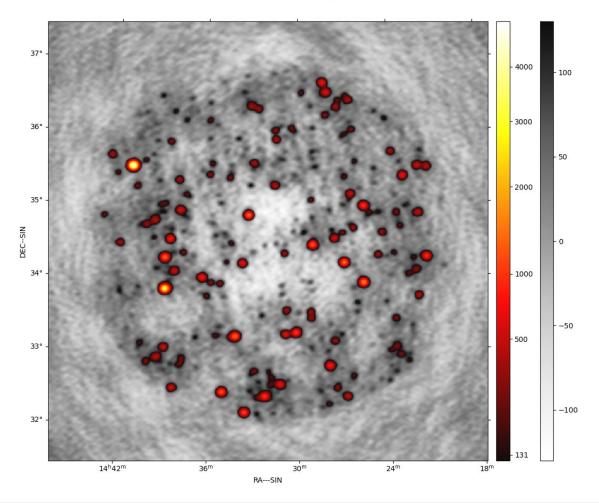
$$\mathbf{\Psi}_d \boldsymbol{\theta}_d = \boldsymbol{\theta}_d * \mathbf{g}_{\sigma_d} \in \mathbb{R}^{N imes N}$$

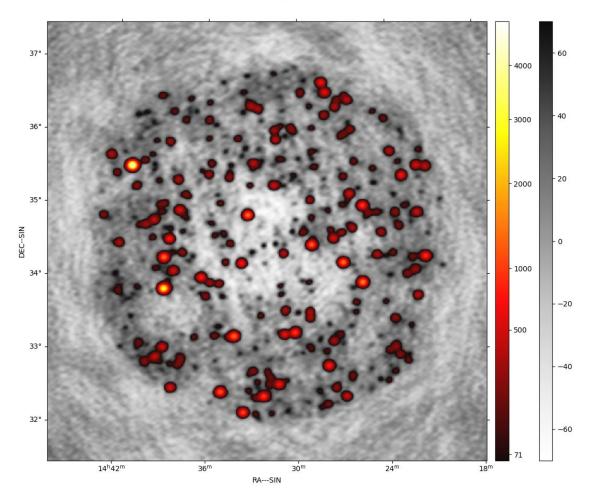
- Convex optimization method:
 - \rightarrow Convergence guarantee
- Frank-Wolfe for atomic norm:
 - \rightarrow Atomic behavior
 - \rightarrow Sparse iterates
- Polyatomic variation:
 - \rightarrow Fast solver

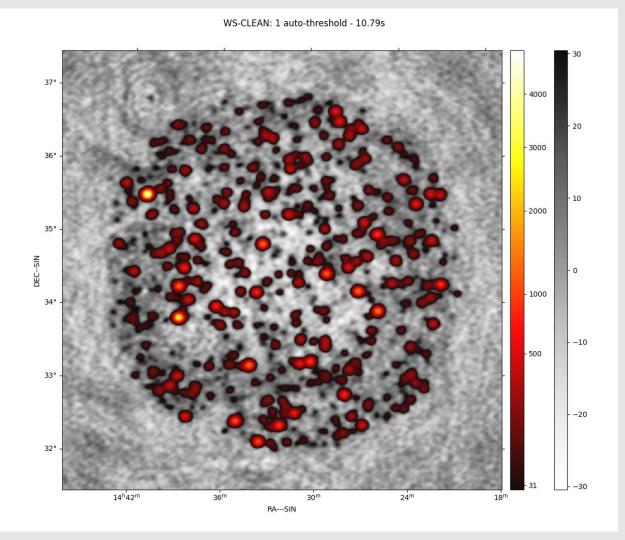
۲

×

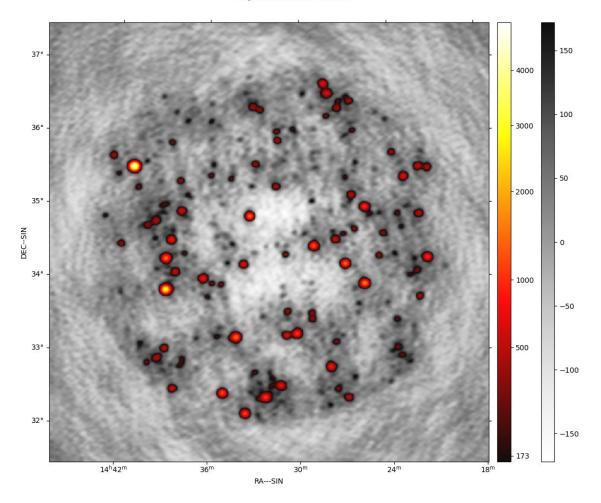
۲



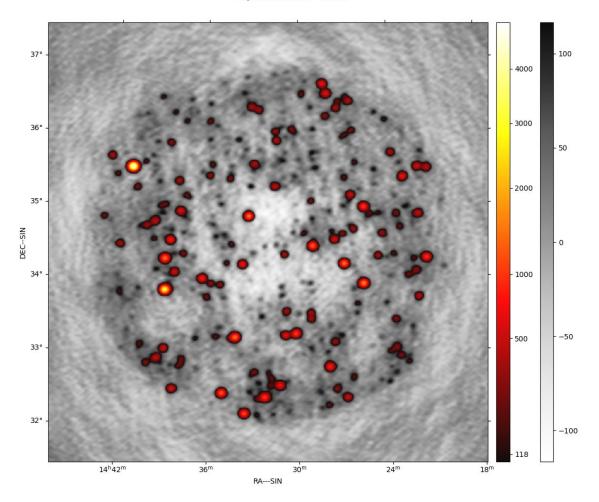




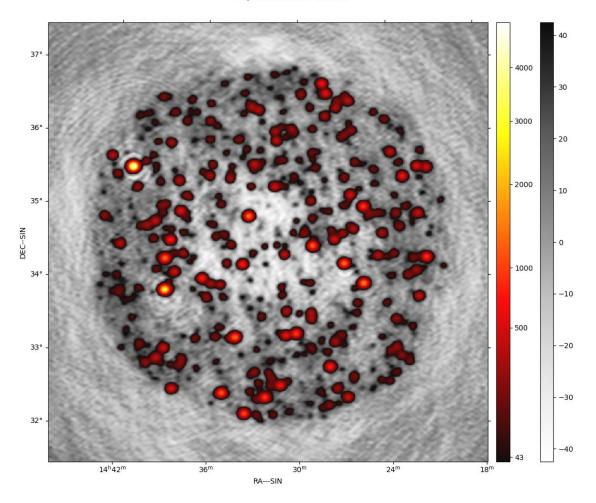
PolyCLEAN 0.050 - 32.96s



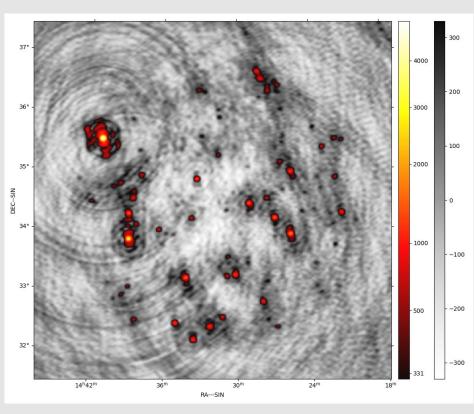
PolyCLEAN 0.020 - 41.89s

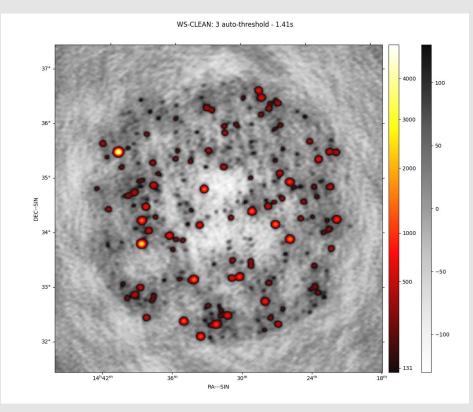


PolyCLEAN 0.005 - 57.48s

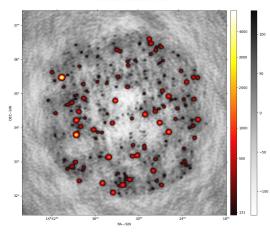


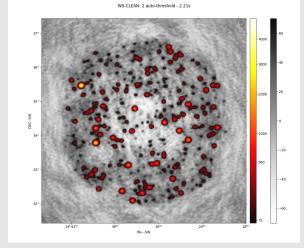
71



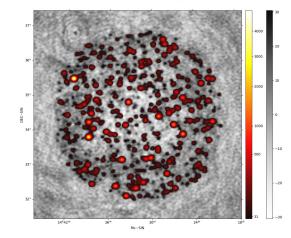


WS-CLEAN: 3 auto-threshold - 1.41s





WS-CLEAN: 1 auto-threshold - 10.79s



PolyCLEAN 0.050 - 32.96s

