

Radio-astronomical Image Reconstruction with Conditional Denoising Diffusion Models

M. Drozdova, V. Kinakh, O. Bait, O. Taran, E. Lastufka, M. Dessauges-Zavadsky, T. Holotyak, D. Schaerer, and S. Voloshynovskiy

Agenda

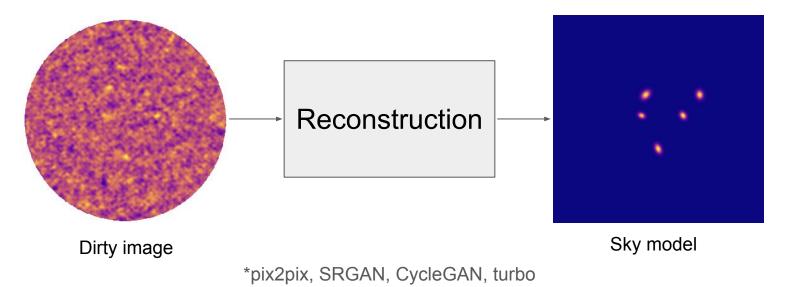
- 1. Problem formulation
- 2. Generative processes
- 3. Dataset
- 4. Pre-processing
- 5. Conditional DDPMs in our problem
- 6. Evaluation metrics
- 7. Results (aggregation strategies, comparative results)
- 8. Flux estimation
- 9. Conclusion

Problem Formulation

Problem: Localization and characterization of radio sources

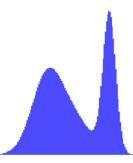
Solution: Reconstruction of the sky model from dirty images

Possible tools: CLEAN, bayesian methods, sparse optimization algorithms, deep learning*



Model noise

Image



one mode

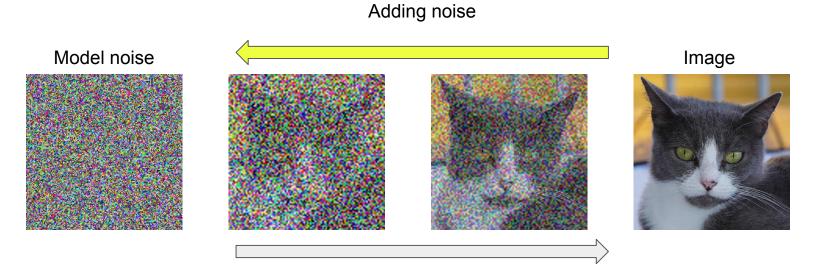
multiple modes

Model noise

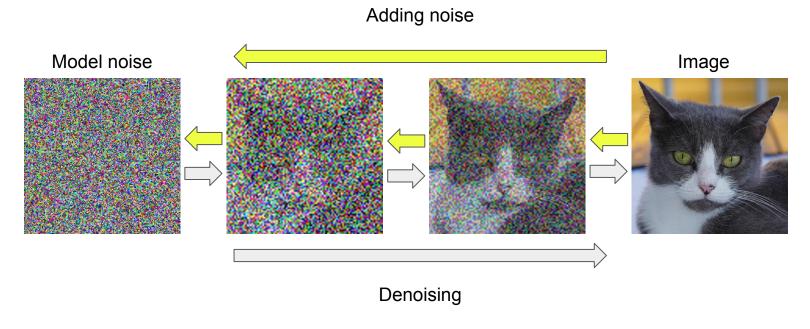
Image

one mode

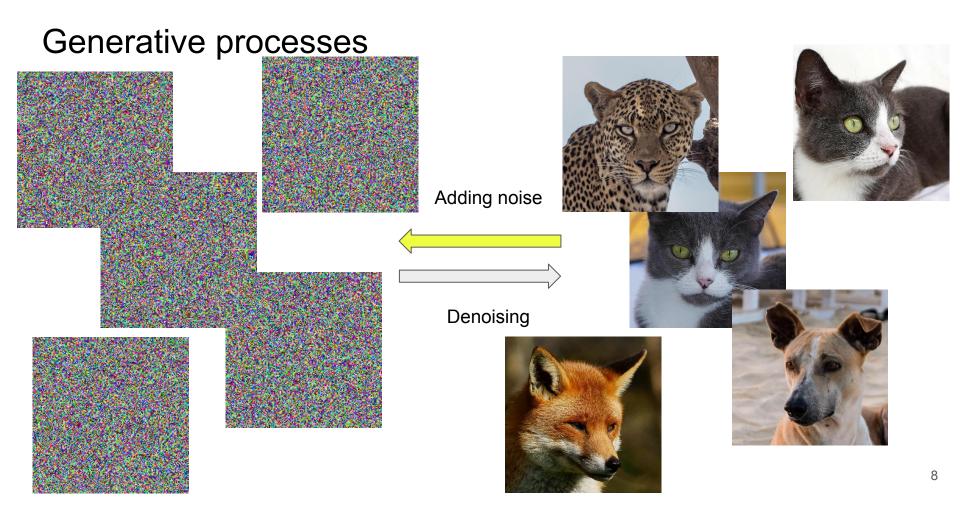
multiple modes

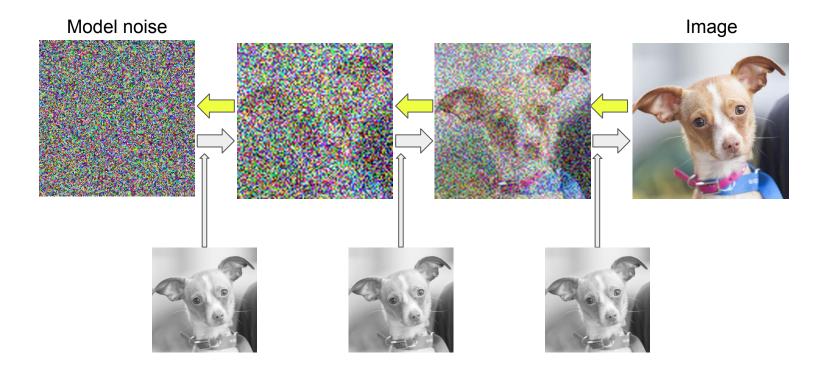


Denoising



Denoising Diffusion Probabilistic Models (DDPMs)

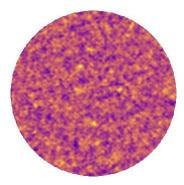


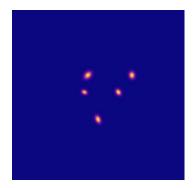


Conditional DDPMs are capable of handling ill-posed problem, as they are stochastic

Dataset

- simulated with CASA data processing software v6.2
- fixed ALMA configuration cycle 5.3
- image size 512x512 corresponding to 51.2'×51.2' acros
- **9164** simulated sky models and the corresponding dirty images
- **1000** dirty images without sources
- a total of 27632 sources
- the root-mean-squared of the noise is 50 µJy

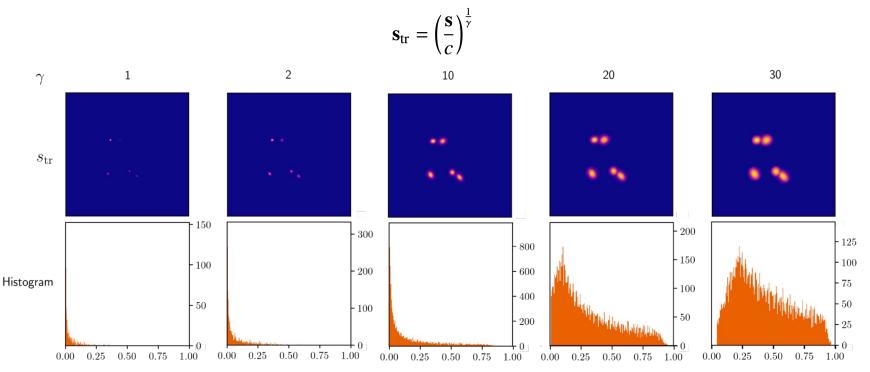


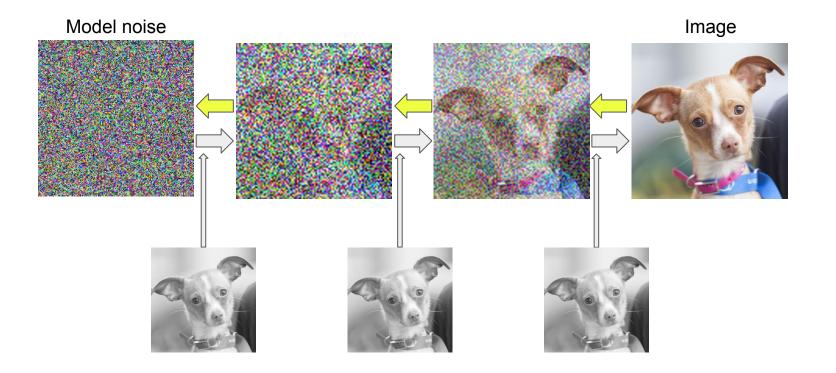


Dr Omkar Bait omkar.bait@unige.ch

Pre-processing

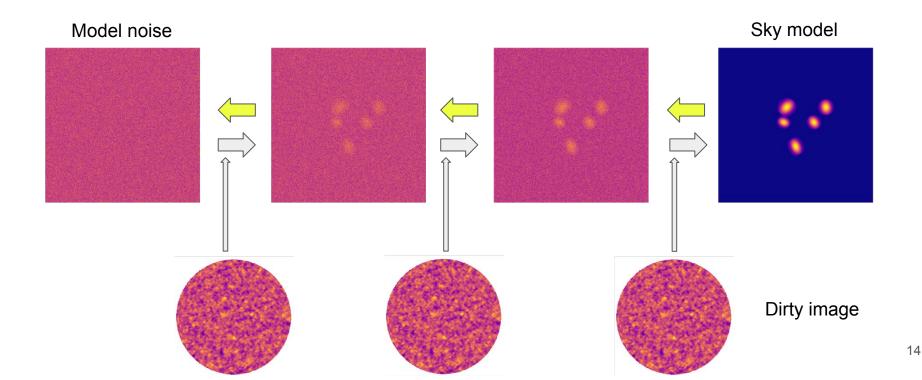
Transformation applied to sky models:





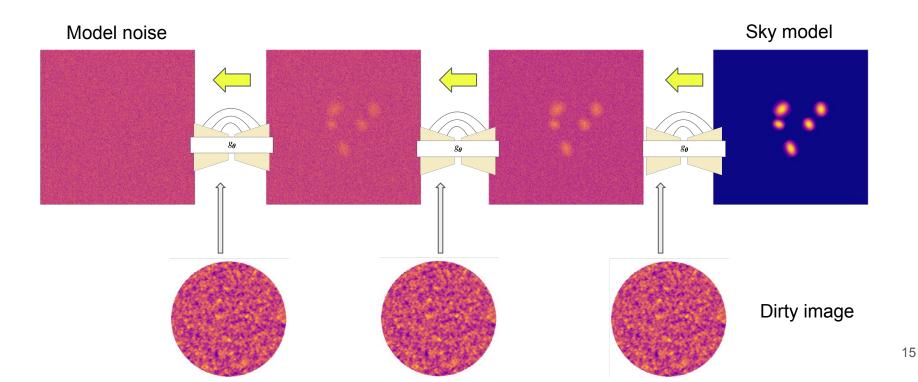
Conditional DDPMs in our problem

Full denoising step of conditional DDPMs consists of 1000 steps.

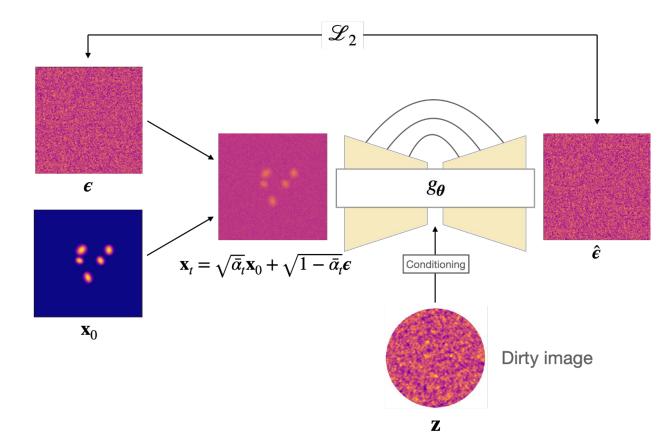


Conditional DDPMs in our problem

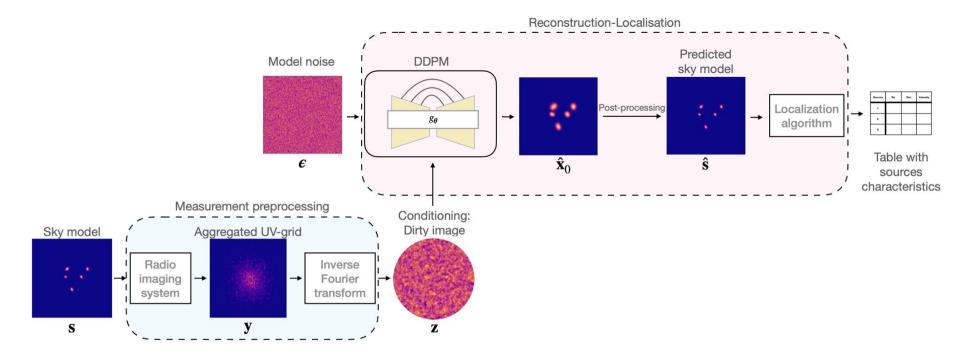
Full denoising step of conditional DDPMs consists of 1000 steps.



Conditional DDPMs in our problem: training



Conditional DDPMs in our problem: entire pipeline



Evaluation metrics

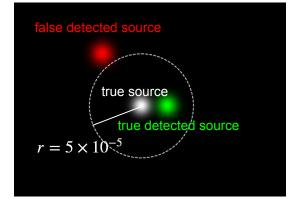
Reconstruction:

• MSE =
$$\frac{1}{H \times W} \sum_{h=1}^{H} \sum_{w=1}^{W} (\hat{\mathbf{x}}_0(h, w) - \mathbf{x}_0(h, w))^2$$

• PSNR = $20 \cdot \log_{10}(MAX) - 10 \cdot \log_{10}(MSE)$

Sources Localization:

- Purity = fraction of true sources among detected sources
- Completeness = fraction of true sources which are detected



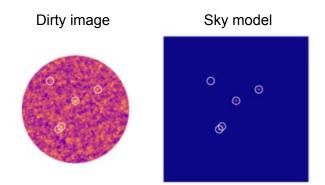
$$Purity = \frac{TP}{TP + FP}$$
$$Completeness = \frac{TP}{TP + FN}$$

Flux estimation:

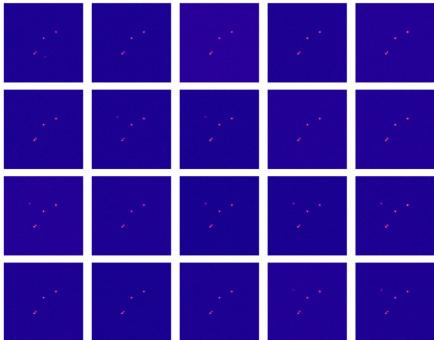
• Fraction of sources with flux estimates within noise amplitude of the true value.

Results: reconstructions

Due to stochasticity of DDPMs we can have multiple reconstruction for the same dirty noisy image:

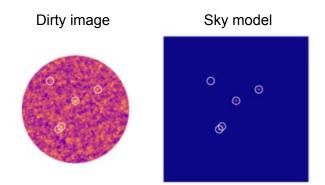


Stochastic reconstructions

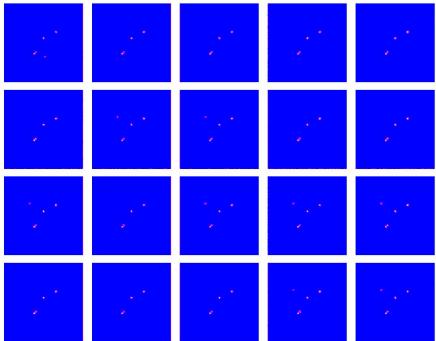


Results: reconstructions

Due to stochasticity of DDPMs we can have multiple reconstruction for the same dirty noisy image:



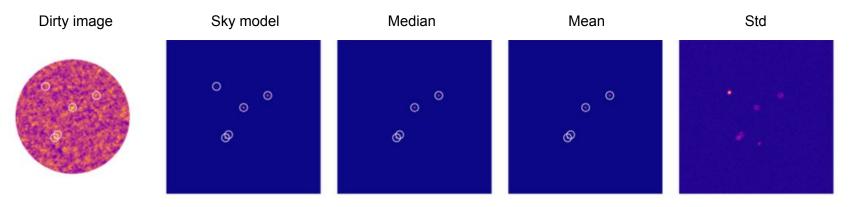
Stochastic reconstructions



Results: aggregations strategies

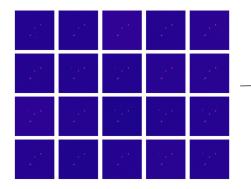
- Aggregate-detect:
 - Image-based aggregation (mean, median)
 - Followed by detection
 - Uncertainty image is the standard deviation across 20 outputs

This uncertainty can be used to estimate the robustness of the predictions, as well as identifying possible missed sources.



Results: aggregations strategies

- Detect-aggregate:
 - Detect sources in each image. Put all sources in one list.
 - Sources within distance *r* are merged as identical.
 - Merged sources are given mean and standard deviation for coordinates and fluxes.
 - Reliability score determined by the ratio of nb of detections to total nb of reconstructions.



source ' source 1 source 1 source ' source 1 source 2 source 2 source 2 source 2 source 2 source source source source 3 source 3 source 4 source 4 source 4 source 4 source 4 source 1 - 20 Merge sources source 1 source 2 source source source source source 2 - 20 source 2 source 2 source 2 source 2 source source 3 source : source 3 source 3 source 4 source 4 source 4 source 4 source 4 source 3 - 20 source 5 source 5 source 4 - 20 source 1 source 2 source source 1 source 1 source ' source 5 - 7 source 2 source 2 source 2 source 2 source 3 source 3 source 3 source 3 source 3 source 4 source 5 source 4 source 4 source source 4 source 5 SOURCE F source 1 source 1 source ' source ' source ' source 2 source 2 source source 2 source 2 source source source source source 3 source 4 source 4 source 4 source 4 source 4 source 5

Multiple reconstructions

Source list extracted from each reconstructed sky model

Final catalog

Results: comparative results

Median aggregation:

• Outstanding performance in low SNR regions.

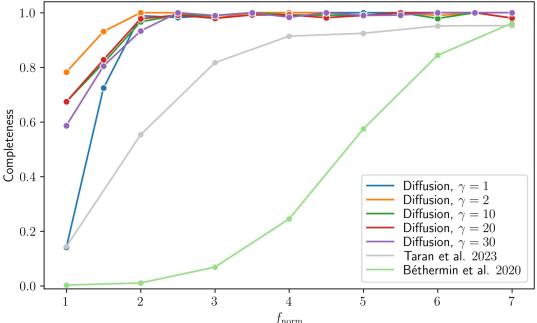
Total localisation metrics:

- Our purity: 0.99
- Our completeness: 0.97

Previous state-of-the-art [3]:

- Purity: 0.91
- Completeness: 0.74

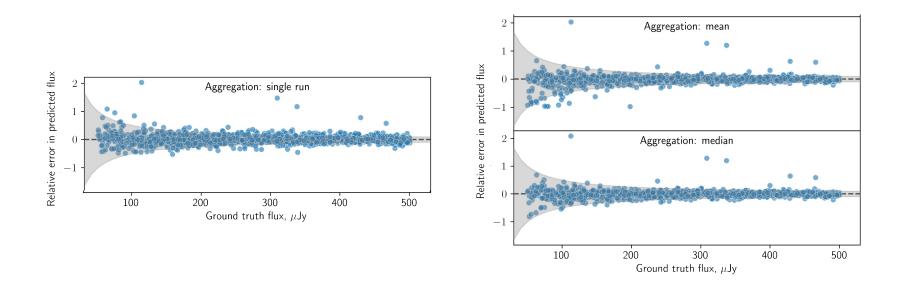
Completeness vs normalized SNR



O.Taran et al., 2023, Challenging interferometric imaging: Machine learning-based source localization from uv-plane observations M.Bethermin et al., 2020, The ALPINE-ALMA [CII] Survey: data processing, catalogs, and statistical source properties

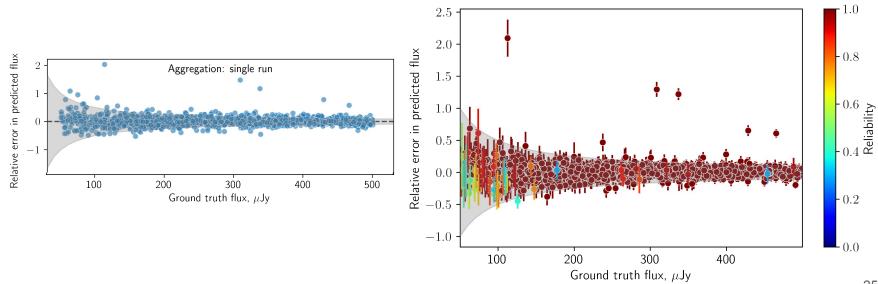
Results: flux estimation

- Flux Estimation Methods: **aggregate-detect (mean, median)** vs. detect-aggregate.
- Gray area sources with flux estimates within the noise amplitude of the actual value.



Results: flux estimation

- Flux Estimation Methods: aggregate-detect (mean, median) vs. detect-aggregate.
- Gray area sources with flux estimates within the noise amplitude of the actual value.



Results: flux estimation

The Table shows the percentage of sources with flux estimates within the noise amplitude of the actual value (fraction).

Model	Normalization	Aggregation				
		Mean	Median	Single run	Detect-aggregate	
PyBDSF	-			0.57		
•	$\gamma = 1$	0.85	0.66	0.048	0.015	
	$\gamma = 2$	0.96	0.97	0.88	0.97	
	$\gamma = 10$	0.92	0.93	0.71	0.89	
Diffusion	$\gamma = 20$	0.82	0.83	0.53	0.72	
	$\gamma = 30$	0.74	0.75	0.47	0.66	

Conclusions

- Significant improvement in source localization using our DDPMs-based approach over prior state-of-the-art.
- At SNR=2, our model achieves 0.7 completeness without normalization, surpassing the previous best of 0.55.
- Introduced a reliability estimation for predicted sources leveraging DDPMs' stochastic nature.
- Outperformed CLEAN+PyBDSF by 0.4 in estimating fluxes, specifically within noise level.
- > Role of normalization power for localization and flux estimation.

Thank you!

Sources

- 1) <u>Lil'Log</u>
- 2) Palette: Image-to-Image Diffusion Models, C. Saharia et al., 2022
- 3) <u>Challenging interferometric imaging: Machine learning-based source</u> <u>localization from uv-plane observations, O.Taran et al., 2023</u>
- 4) AFHQ dataset

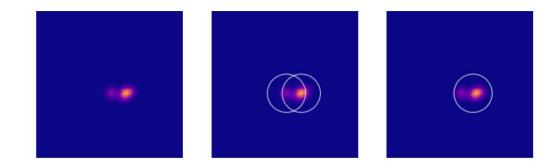
Backup

Final scores comparison

Model	Normalization	Input	Aggregation	Metrics		
Woder				Purity	Completeness	F1
Diffusion	$\gamma = 1$	dirty image	single run detect-aggregate mean median	100.00 100.00 99.60 99.83	44.97 53.52 93.11 90.84	62.04 69.72 96.24 95.12
Diffusion	$\gamma = 2$	dirty image	single run detect-aggregate mean median	97.45 98.33 97.88 99.30	96.71 97.88 97.80 97.05	97.08 98.10 97.84 98.16
Diffusion	$\gamma = 10$	dirty image	single run detect-aggregate mean median	98.66 98.90 98.51 99.29	94.66 95.69 95.23 94.78	96.62 97.27 96.84 96.98
Diffusion	$\gamma = 20$	dirty image	single run detect-aggregate mean median	98.26 99.52 99.52 99.52	94.43 94.70 93.64 93.79	95.81 97.05 96.49 96.57
Diffusion	$\gamma = 30$	dirty image	single run detect-aggregate mean median	98.58 99.20 98.80 98.81	93.46 94.10 93.41 94.25	94.93 96.58 96.03 96.47
PyBDSF PyBDSF	-	dirty image dirty noiseless image	-	72.18 99.04	20.82 77.82	32.31 87.16
Taran et al. (2023)	-	reduced uv-samples	-	91.02	74.14	81.72
Photutils localization	-	sky model	-	99.70	99.10	99.40

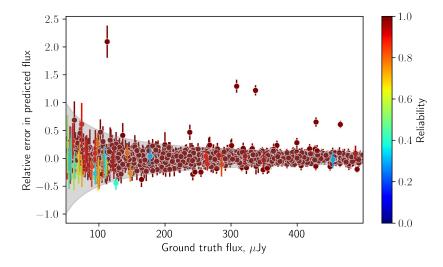
Photutils error

- Employed the photutils algorithm for localizing and characterizing sources from sky models.
- Parameter selection based on true sky models.
- Less than 1% error rate, primarily with closely situated sources, as illustrated in the example.



Flux estimation: errors

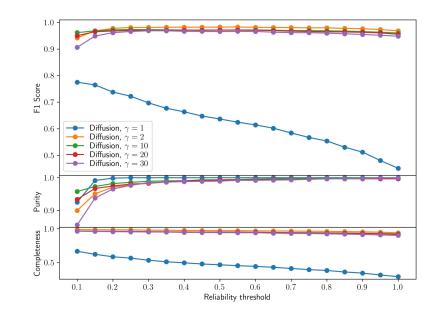
- Examples of incorrect flux estimations.
- Two cases involve degenerated scenarios with sources at the same location: one large-intensity source estimated instead of two smaller ones.
- Another example with two proximate sources, resulting in a significant overestimation of one flux.



Data Type	Ra	Dec	Flux (µJy)	
Real	150.192944	3.995500	309	
Real	150.192944	3.995500	429	
Predicted	150.192945	3.995501	738	
Real	149.655167	3.643278	238	
Real	149.655167	3.643278	113	
Predicted	149.655165	3.643277	346	
Real	148.163222	1.370722	126	
Real	148.163222	1.370444	400	
Predicted	148.163220	1.370729	399	
Predicted	148.163223	1.370444	436	

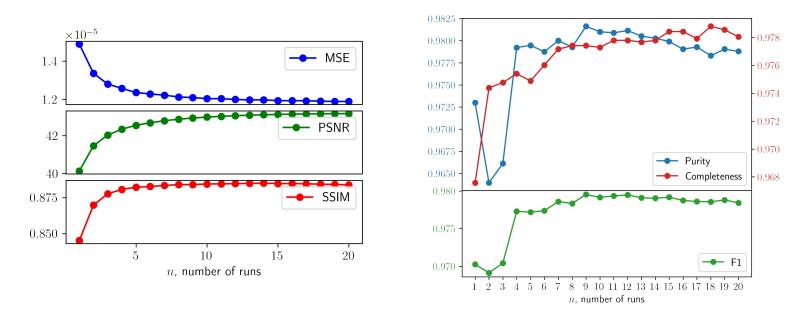
Score vs "reliability" threshold

- Increasing reliability value makes our model stricter, leading to missed faint sources.
- A low value accepts all sources, resulting in potential false positives.
- These false positives don't impact completeness, but can affect accuracy.



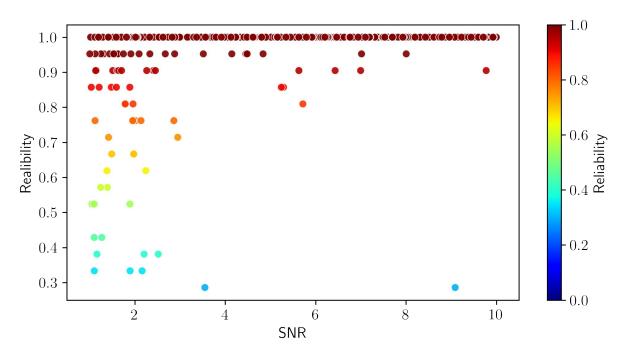
Reconstruction and localisation metrics - the number of runs

- Results aggregated with median show improved metrics with as we perform more runs of DDPM.
- Reconstruction metrics improve gradually.
- Localization metrics plateau quickly; even 5 runs is often enough.



Reliability vs SNR

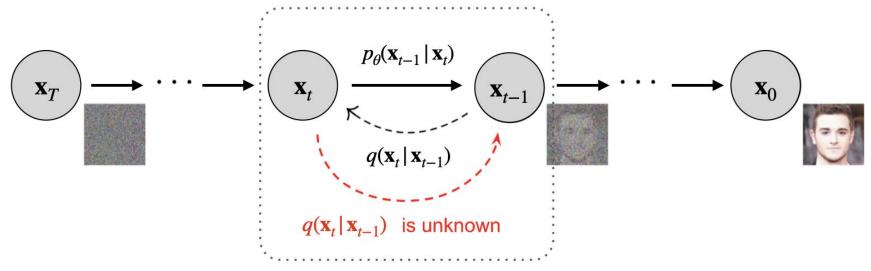
- Observed correlation between introduced reliability and SNR.
- Faint sources appear in fewer runs, while bright ones consistently show in all.
- All experiments conducted over 20 runs.



Denoising Diffusion Probabilistic Models

Two passes:

 $q(\mathbf{x}_t | \mathbf{x}_{t-1})$ forward (progressively adding noise) $q(\mathbf{x}_t | \mathbf{x}_{t-1})$ backward (progressively denoising)



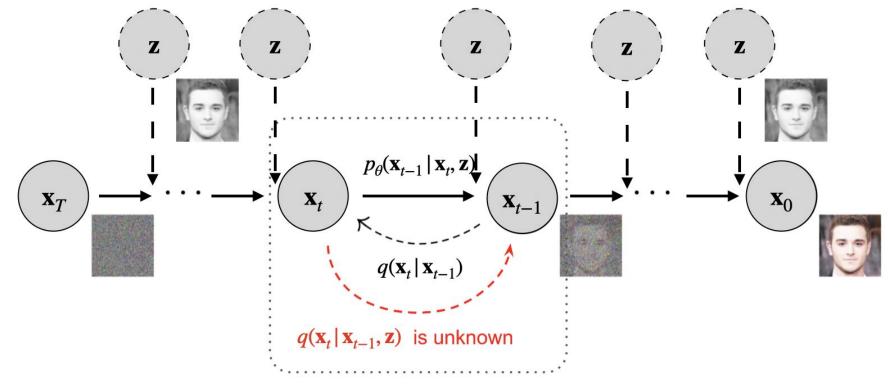
Denoising Diffusion Probabilistic Models

Two passes:



*scheme from Lil'Log

Conditional Denoising Diffusion Probabilistic Models!

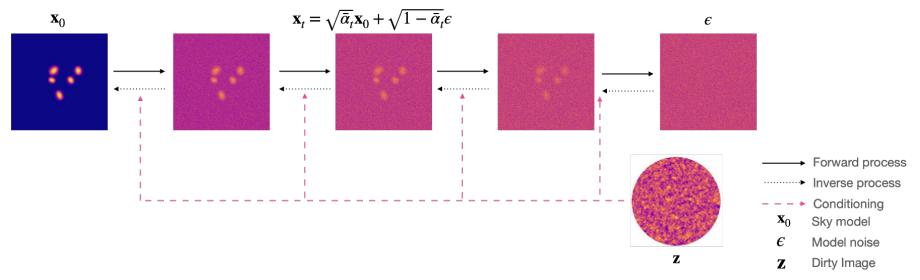


*scheme from Lil'Log

Conditional DDPM in our problem

CASA simulations for ALMA: dirty images (condition) and sky models (output)

Noise of DDPM goes through conditioned inverse process 250 times to get the sky model.



Limitations

- Performance declines as amount of water vapor increases.
- With water vapor triple the training value, completeness drops from 95% to 75%.
- Indicates fine-tuning may be beneficial.

