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Problem Formulation
Problem: Localization and characterization of radio sources

Solution: Reconstruction of the sky model from dirty images

Possible tools: CLEAN, bayesian methods, sparse optimization algorithms, deep learning*

Dirty image Sky model
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Reconstruction

*pix2pix, SRGAN, CycleGAN, turbo



Generative processes
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Generative processes
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Generative processes

7

Image

Denoising

Adding noise

Denoising Diffusion Probabilistic Models (DDPMs)

Model noise



Generative processes
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Generative processes
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ImageModel noise



Conditional DDPMs are capable of handling ill-posed problem, as they are stochastic
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Generative processes

C. Saharia et al., 2022, Palette: Image-to-Image Diffusion Models

conditioning outputs

https://arxiv.org/abs/2111.05826


Dataset

● simulated with CASA data processing software v6.2
● fixed ALMA configuration cycle 5.3
● image size 512x512 corresponding to 51.2'×51.2′ acros
● 9164 simulated sky models and the corresponding dirty images
● 1000 dirty images without sources
● a total of 27632 sources
● the root-mean-squared of the noise is 50 μJy
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Pre-processing
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Transformation applied to sky models:



Generative processes
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Conditional DDPMs in our problem
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Model noise Sky model

Dirty image

Full denoising step of conditional DDPMs consists of 1000 steps.



Conditional DDPMs in our problem
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Model noise Sky model

Dirty image

Full denoising step of conditional DDPMs consists of 1000 steps.



Conditional DDPMs in our problem: training

16



Conditional DDPMs in our problem: entire pipeline
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Evaluation metrics 
Reconstruction:

●

●

Sources Localization: 

● Purity = fraction of true sources among detected sources 
● Completeness = fraction of true sources which are detected

Flux estimation:

● Fraction of sources with flux estimates within noise amplitude of the true value.
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false detected source

true detected source

true source



Results: reconstructions
Due to stochasticity of DDPMs we can have 
multiple reconstruction for the same dirty noisy 
image:
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Dirty image Sky model

Stochastic reconstructions



Results: reconstructions
Due to stochasticity of DDPMs we can have 
multiple reconstruction for the same dirty noisy 
image:
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Dirty image Sky model

Stochastic reconstructions



Results: aggregations strategies
● Aggregate-detect:

○ Image-based aggregation (mean, median)
○ Followed by detection
○ Uncertainty image is the standard deviation across 20 outputs

This uncertainty can be used to estimate the robustness of the predictions, as well as identifying 
possible missed sources.
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Dirty image Sky model Median Mean Std



Results: aggregations strategies
● Detect-aggregate:

○ Detect sources in each image. Put all sources in one list.
○ Sources within distance   are merged as identical.
○ Merged sources are given mean and standard deviation for coordinates and fluxes.
○ Reliability score determined by the ratio of nb of detections to total nb of  reconstructions.
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Results: comparative results
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Completeness vs normalized SNR Median aggregation:

● Outstanding performance in 
low SNR regions.

Total localisation metrics:

● Our purity: 0.99
● Our completeness: 0.97

Previous state-of-the-art [3]:
● Purity: 0.91
● Completeness: 0.74

O.Taran et al., 2023, Challenging interferometric imaging: Machine learning-based source localization from uv-plane observations 
M.Bethermin et al., 2020, The ALPINE-ALMA [CII] Survey: data processing, catalogs, and statistical source properties

https://arxiv.org/abs/2305.03533
https://arxiv.org/abs/2002.00962


Results: flux estimation
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● Flux Estimation Methods: aggregate-detect (mean, median) vs. detect-aggregate.
● Gray area - sources with flux estimates within the noise amplitude of the actual value.

 



Results: flux estimation
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● Flux Estimation Methods: aggregate-detect (mean, median) vs. detect-aggregate.
● Gray area - sources with flux estimates within the noise amplitude of the actual value.

 



Results: flux estimation
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The Table shows the percentage of sources with flux estimates within the noise amplitude of the actual 
value (fraction).

 



Conclusions 

➢ Significant improvement in source localization using our DDPMs-based approach over 
prior state-of-the-art.

➢ At SNR=2, our model achieves 0.7 completeness without normalization, surpassing the 
previous best of 0.55.

➢ Introduced a reliability estimation for predicted sources leveraging DDPMs' stochastic 
nature.

➢ Outperformed CLEAN+PyBDSF by 0.4 in estimating fluxes, specifically within noise 
level.

➢ Role of normalization power for localization and flux estimation.
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Thank you!
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Sources

1) Lil'Log
2) Palette: Image-to-Image Diffusion Models, C. Saharia et al., 2022
3) Challenging interferometric imaging: Machine learning-based source 

localization from uv-plane observations, O.Taran et al., 2023
4) AFHQ dataset
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https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/abs/2111.05826
https://arxiv.org/abs/2305.03533
https://arxiv.org/abs/2305.03533
https://paperswithcode.com/dataset/afhq


Backup
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Final scores comparison
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Photutils error
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● Employed the photutils algorithm for localizing and characterizing sources from sky models.
● Parameter selection based on true sky models.
● Less than 1% error rate, primarily with closely situated sources, as illustrated in the example.



Flux estimation: errors
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● Examples of incorrect flux estimations.
● Two cases involve degenerated scenarios with sources at the same location: one large-intensity 

source estimated instead of two smaller ones.
● Another example with two proximate sources, resulting in a significant overestimation of one flux.



Score vs "reliability" threshold
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● Increasing reliability value makes our model stricter, leading to missed faint sources.
● A low value accepts all sources, resulting in potential false positives.
● These false positives don't impact completeness, but can affect accuracy.



Reconstruction and localisation metrics - the number of runs
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● Results aggregated with median show improved metrics with as we perform more runs of DDPM.
● Reconstruction metrics improve gradually.
● Localization metrics plateau quickly; even 5 runs is often enough.
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Reliability vs SNR
● Observed correlation between introduced reliability and SNR.
● Faint sources appear in fewer runs, while bright ones consistently show in all.
● All experiments conducted over 20 runs.



Denoising Diffusion Probabilistic Models
Two passes: 

forward (progressively adding noise)  

- backward (progressively denoising) 
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*scheme from Lil'Log

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Denoising Diffusion Probabilistic Models
Two passes: 

forward (progressively adding noise)  

- backward (progressively denoising) 
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*scheme from Lil'Log

both processes are stochastic, 
what if we need guidance?

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/


Conditional Denoising Diffusion Probabilistic Models!
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*scheme from Lil'Log

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
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CASA simulations for ALMA: dirty images (condition) and sky models (output)

Noise of DDPM goes through conditioned inverse process 250 times to get the sky model.

Conditional DDPM in our problem



Limitations
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● Performance declines as amount of water vapor increases.
● With water vapor triple the training value, completeness drops from 95% to 75%.
● Indicates fine-tuning may be beneficial.


