Why Open Science in the SKA era?

Lourdes Verdes-Montenegro
Susana Sánchez, Julián Garrido
IAA-CSIC

Swiss SKA Days – 6-8th Sept 2023
Zürich (1969)

Credits: Carlos Verdes-Montenegro
Motivation

- Environment and galaxies
- Reinvent?
- Efficient search of data
- Can’t reproduce!
- Large sample
- Sharing Research
- Different wavelengths
- Analysis tools
- What do excellent science and CV mean?
- What should we publish?
Motivation

ERC Scientific Seminar Series

Prof. Lourdes Verdes-Montenegro
Instituto Astrofísica Andalucía, Granada, Spain
ERC Panel Chair

Love for science or ‘academic prostitution’?
12 April 2013
11.00 to 12.30

European Research Council
Established by the European Commission
Motivation

Science Digital @ UNGA 75

The SKAO: A global Research Infrastructure for the 21st Century and beyond

Open Science for sustainability and inclusiveness: the SKA role model

Lourdes Verdes-Montenegro, Susana Sánchez
IAA Severo Ochoa Centre of Excellence (CSIC)

Tuesday 29th September 2020

Credits: UNESCO
2 OPEN POSITIONS
IAA-CSIC, GRANADA, SPAIN
Center of Excellence Award

Candidates: (a) early/mid career postdoc & (b) advanced postdoc
- Expertise in detailed studies of galaxies with HI interferometry (precursors/pathfinders), environment, kinematics

AMIGA team: 18 members

Contact: lourdes@iaa.es
Outline

• Open Science, a new concept?
• Is “Big Data science” possible without Open Science?
• Revised research assessments
• Impact
• Conclusions
Open Science, a new concept?
Open Science: a *new* concept?

- Too many *adjectives* for science:

 excellent, high quality, trustable, ... Open
Open Science: a **new** concept?

- Too many **adjectives** for science:

 excellent, high quality, trustable, ... Open

- **Let’s go back 1000 years in time...**

Scientific Reproducibility is a fundamental principle of the Scientific Method, a process pioneered by Ibn al-Haytham. In the XIth century, he proposed that a hypothesis must be supported by experiments based on **confirmable procedures** or mathematical evidence. Made special emphasis on reproducibility of results.
Open Science: a new concept?

• Too many **adjectives** for science:
 excellent, high quality, trustable, ... Open

• Or let’s go back 383 years in time...

Descartes reminded us in the 17th century that **Scientific Reproducibility** is a fundamental principle of the **Scientific Method**, and laid the foundations for the Philosophy of Science

• **Science = Scientific Method = Reproducible = Open!**
Open Science: a new concept?

- Too many adjectives for science:
 excellent, high quality, trustable, ... Open

- Or let’s go back 383 years in time...

Descartes reminded us in the 17th century that Scientific Reproducibility is a fundamental principle of the Scientific Method, and laid the foundations for the Philosophy of Science.

- Science = Scientific Method = Reproducible = Open!

The concept is not new. The tools to implement Open Science practices are quickly moving forward.
Open Science: but then we already follow it, right?

- We are scientists! We (want to) follow the Scientific Method!
Open Science: but then we already follow it, right?

• We are scientists! We (want to) follow the Scientific Method!

Questionnaire on reproducibility (1500 scientists)

• 70% of researchers have tried and failed to reproduce another scientist's experiments
• > 50% have failed to reproduce their own ones!
 • Chemistry: 90% (60%)
 • Biology: 80% (60%)
 • Physics and engineering: 70% (50%)
 • Medicine: 70% (60%)
 • Earth and environmental science: 60% (40%)
Open Science: but then we already follow it, right?

• We are scientists! We (want to) follow the Scientific Method!

Questionnaire on reproducibility (1500 scientists)
• 70% of researchers have tried and failed to reproduce another scientist's experiments
• >50% have failed to reproduce their own ones!
 • Chemistry: 90% (60%)
 • Biology: 80% (60%)
 • Physics and engineering: 70% (50%)
 • Medicine: 70% (60%)
 • Earth and environmental science: 60% (40%)

Aha! So you don’t empathise?
Open Science: but then we already follow it, right?

- We are scientists! We (want to) follow the Scientific Method!

Questionnaire on reproducibility (1500 scientists)
- 70% of researchers have tried and failed to reproduce another scientist's experiments
- > 50% have failed to reproduce their own ones!
 - Chemistry: 90% (60%)
 - Biology: 80% (60%)
 - Physics and engineering: 70% (50%)
 - Medicine: 70% (60%)
 - Earth and environmental science: 60% (40%)

Aha! So you don’t empathise?

Overly Honest Method
@OverlyHonestly

Maybe with this?

You can download our code from the URL supplied. Good luck downloading the only postdoc that can get it to run, though #OverlyHonestMethods
Open Science: then what happened since 1637?

- **Moving beyond the PDF**

 40% Knowledge Burying in paper publication = **Rest In Paper**

 (S. Bechhofer 2011, Research Objects: Towards Exchange and Reuse of Digital Knowledge)
Open Science: then what happened since 1637?

• Moving beyond the PDF

40% Knowledge Burying in paper publication = Rest In Paper

(S. Bechhofer 2011, Research Objects: Towards Exchange and Reuse of Digital Knowledge)

In practice

Moving from narratives (last 300 yrs) to the actual output of research is not so easy
...indeed is not so easy

Big Data preservation & transfer
Primary (raw) data can not be accessed in an automatic way

Standarized catalogues
Processed data and images are only publicly available in the paper PDF

Findable code Repositories
There are some scripts for processing the data on a server somewhere, but no one remembers where

Software environment preservation
The code is in a public repository, but good luck trying to install/execute it.
Big Data preservation & transfer
Primary (raw) data can not be accessed in an automatic way

Standarized catalogues
Processed data and images are only publicly available in the paper PDF

Findable code Repositories
There are some scripts for processing the data on a server somewhere, but no one remembers where

Software environment preservation
The code is in a public repository, but good luck trying to install/execute it.

FAIR: Findable, Accessible, Interoperable, Reusable

• FAIR (www.go-fair.org) is a multi-disciplinary bottom-up initiative to make scientific data reusable.
...indeed is not so easy

Big Data preservation & transfer
Primary (raw) data cannot be accessed in an automatic way

Standarized catalogues
Processed data and images are only publicly available in the paper PDF

Findable code Repositories
There are some scripts for processing the data on a server somewhere, but no one remembers where

Software environment preservation
The code is in a public repository, but good luck trying to install/execute it.

• Effort is not always **rewarded**
• Requires new **advanced tools** to support scientists to fulfill FAIR

FAIR:
- Findable
- Accessible
- Interoperable
- Reusable
Is “Big Data science” possible without Open Science?
The Challenge: extraction of Scientific Knowledge

Huge and complex data volumes
Large teams distributed globally

A shared challenge for data-intensive research

Computing / storage / network / human resources will be needed:

- Efficient exploitation of Distributed Computing Infrastructures
- Large international alliances of scientists
 - Tools to enhance scientific collaboration
 - Platforms to share data, methods and knowledge

Open Science is the Aim and also the Mean
The Square Kilometre Array “case”

The SKA Regional Centres, the core of the SKA Science

Credits: AENEAS project
The Square Kilometre Array “case”

Mathieu’s talk yesterday

Global shift in research practices

Credits: AENEAS project

The SKA Regional Centres, the core of the SKA Science
Key ingredients of the SRCs to support Open Science

- Science Gateway
- Standards for data interoperability (IVOA)
- Collaborative Science
- Reproducible Notebooks
- Open to society
- User support and training
- New Metrics
- Workflows and provenance
- Place for software analysis, visualisation
- Access to project data
- Location agnostic platform
- Citizen Science

Open to society
The challenge from different perspectives

Implementation of Open, reproducible science is challenging, even more in this new framework:

- Individual users
- Large teams
- Service providers
- Evaluators/Funding agencies

new roles → new perspectives
Data to the desktop: “individual scientist”

About trust

• I have the best code, which I know how to use and can do special things

• I do not trust any pipeline that you made
 • partly because I know better how to do it
 • partly because I read the news and there is a reproducibility crisis
 • well, and I can hardly reproduce the results of my own papers some years later...

• In general I want full control of the software and of the computational environment
Computation to data, providers perspective: Data Centres

About technology

• We need to install your software in our platform. Can we trust it? Can we run it? Environment, dependencies, etc

• Hey, we are offering services to the community, computation + tools. We would be grateful if you allow us to share it with other users (with proper credit)

• Mmmm, sharing is great, but, **putting the software in the platform is not enough**: you need to provide the context for people to be able to rerun the software on the same or other data
Large alliances of scientists

About metrics of research careers

• We have tools to generate Advanced Data Products, and we will put them there where the storage and computation is (Data Centres)

• But... we put effort on it, what would we gain if we make the *additional effort* to make it reusable? If we make it, then we will pave the way to competitors

• Well, maybe we will share in 4 yrs time (PhD typical time)
Publishers

- Will we need **different profiles of referees** to evaluate the scientific discussion together with the data quality and the methods (aka. Reproducibility)?

- If the data and the methods (tools) will be in Data Centres, **will our referees need to become a “user” of the Data Centres** to be able to validate a paper?

- Will we be able to engage **so many referees** as may be needed?

- Will we need to validate the data, the tools, and the scientific analysis **separately**?
Policy makers / funding agencies

Evaluation

• How to measure reproducibility?
• How to weight it and/or aggregate with other indicators?

See later on “Revised research assessments”
For scientific facilities, adoption of Open Science is both a need and a duty.
The SKA and Open Science

Adoption of Open Science values

“Open Science, based on the precept of making scientific research collaborative, transparent and accessible to all, is rooted in SKA’s foundational principles. So is the related concept of scientific reproducibility, a fundamental aspect of the modern Scientific Method since the 17th century allowing independent teams to have access to methodology and tools to be able to confirm experiments and validate results.”

Reproducibility as a metric of success

“Reproducibility of SKA science data products. This metric will measure how complete the workflow description is that is linked to each SKA data product. [...] must reflect completeness of the provenance information for each data product and accessibility of the software used. This is related to how well SKA science data products adhere to the FAIR principles.”
Revised research assessments
Altmetrics is the creation and study of new metrics based on the Social Web for analyzing, and informing scholarship.

http://altmetrics.org/about/
San Francisco Declaration on Research Assessment

There is a pressing need to improve the ways in which the output of scientific research is evaluated by funding agencies, academic institutions, and other parties. To address this issue, a group of editors and publishers of scholarly journals met during the Annual Meeting of The American Society for Cell Biology (ASCB) in San Francisco, CA, on December 16, 2012. The group developed a set of recommendations, referred to as the San Francisco Declaration on Research Assessment. We invite interested parties across all scientific disciplines to indicate their support by adding their names to this Declaration.

The outputs from scientific research are many and varied, including: research articles reporting new knowledge, reviews synthesizing existing knowledge, book chapters and books, policy briefs, and news articles. The way in which the impact of these outputs is measured and reported is often inexact and misleading. This has caused serious harm to the research enterprise and to those who depend upon it. The time has come for a new approach to the evaluation of scientific research.
Not just citation of articles, various forms of social media shares, web-downloads, any other measure of the Q and impact of research outcomes
Principles for assessment criteria

• Focusing research assessment criteria on quality

 – Openness of research, and results that are verifiable and reproducible where applicable, strongly contribute to quality

• Recognise the diversity of research and reward early sharing and open collaboration
ESSAY

The Hong Kong Principles for assessing researchers: Fostering research integrity

David Moher1,2*, Lex Bouter3,4, Sabine Kleinert5, Paul Glasziou6, Mal Har Sham7, Virginia Barbour8, Anne-Marie Coriat9, Nicole Foeger10, Ulrich Durnagl11

1 Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada, 2 School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada, 3 Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, location VUmc, Amsterdam, the Netherlands, 4 Department of Philosophy, Faculty of Humanities, Vrije Universiteit, Amsterdam, the Netherlands, 5 The Lancet, London Wall Office, London, United Kingdom, 6 Institute for Evidence-Based Healthcare, Bond University, Gold Coast, Queensland, Australia, 7 School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, 8 Queensland University of Technology (QUT), Brisbane, Australia, 9 Wellcome Trust, London, United Kingdom, 10 Austrian Agency for Research Integrity, Vienna, Austria, 11 Berlin Institute of Health, QUEST Center for Transforming Biomedical Research, Berlin, Germany

* dmohr@ohri.ca

Abstract

For knowledge to benefit research and society, it must be trustworthy. Trustworthy research is robust, rigorous, and transparent at all stages of design, execution, and reporting. Assessment of researchers still rarely includes considerations related to trustworthiness, rigor, and transparency. We have developed the Hong Kong Principles (HKPs) as part of the 6th World Conference on Research Integrity with a specific focus on the need to drive research improvement through ensuring that researchers are explicitly recognized and rewarded for behaviors that strengthen research integrity. We present five principles: responsible research practices; transparent reporting; open science (open research); valuing a diversity of types of research; and recognizing all contributions to research and scholarly activity. For each principle, we provide a rationale for its inclusion and provide examples where these principles are already being adopted.
Impact
Open Science for sustainability and inclusiveness

Open Science represents an approach to research that is collaborative, transparent and accessible

“Open Science embodies the need to transform, open and democratize the entire knowledge generation to ensure that every scientific challenge is faced and really drives and allows the achievement of the United Nations Sustainable Development Goals”

UNESCO and Open Science (2020) [1]
Open Science for sustainability and inclusiveness

Acceleration of knowledge transfer to Society, pandemics, sanitary crisis

- Speed up building of skills
- Teaching, e.g. how to access public archives, fostering collaborative practices
- Citizen science

Science hidden behind paywall barriers

- Free access to research sources to the whole scientific community = limitations to science progress
- OS = Data and results more accessible and reliable
- OS = Promotion of scholarly exchange of ideas
- OS = Avoid duplication
Open Science for sustainability and inclusiveness

Promote equity, diversity and inclusion

• All previous items +

• A tool enabling an objective evaluation of work

• Barriers are even more emphasized to scientist women in places where their contribution tend to be ignored or anonymized.
Conclusions

• “Instead of playing the game it is time to change the rules”
 Chambers et al 2014, AIMS Neuroscience 1,4, 2014

• Astronomy is in a privileged situation as pioneer

• Open reproducible science is: a duty and a need

• We made a lot of progress in the last few years in all areas!
Conclusions

• “Instead of playing the game it is time to change the rules”
 Chambers et al 2014, AIMS Neuroscience 1,4, 2014

• Astronomy is in a privileged situation as pioneer

• Open reproducible science is: a duty and a need

• We made a lot of progress in the last few years in all areas!

Infrastructures are key for implementing O.S.
(aka SKAO & SRCs)
Conclusions

• “Instead of playing the game it is time to change the rules”
 Chambers et al 2014, AIMS Neuroscience 1,4, 2014

• Astronomy is in a privileged situation as pioneer

• Open reproducible science is: a duty and a need

• We made a lot of progress in the last few years in all areas!

Infrastructures are key for implementing O.S.
(aka SKAO & SRCs)

In the end there should not be "good" science, but only Science
With financial support from