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the biased tracers accessible to observations

• Most tracers, e.g., galaxies or 21 cm signals, are the product of 
complex astrophysical processes (“baryonic physics”)

Marginalize over these 
(astrophysical) complications

e.g., Effective Field Theory (e.g., 
Senatore et al. 2015, Schmidt et al. 2019)

• Lose cosmological information from small 
scales (< few Mpc) 

• Lose many of the astrophysical constraints

Try to model them

• Computationally expensive 
• Some of the physics not well understood 

(e.g., AGN feedback)

e.g., semi-analytical models, 
cosmological simulations
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Modeling baryons

Idea: Encapsulate simulation results by training deep neural network

• Once trained, prediction is computationally inexpensive => Emulator

+ Generation of mock catalogs, light cones, covariance matrix calculation 
+ Interpolate to new parameter values, redshifts etc. => Likelihood-free inference 
+ Increase resolution (“super-resolution”) 
+ Upscale to much larger volumes while preserving high resolution

• Multitude of interacting physical processes 
• Wide range of scales  
• Coupling of scales: Stellar and AGN feedback
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• Hydrodynamical cosmological simulations

- high computational cost
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EMBER - EMulating Baryonic EnRichment Network  

title slide shows part of the B100 map

• Deep learning framework to sample “realistic” baryon maps for given DM maps
p(Σgas |ΣDM)
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EMBER - EMulating Baryonic EnRichment Network  

• Trained on cosmological hydrodynamical simulations

title slide shows part of the B100 map

• Fiducial architecture based on a Deep Convolutional Neural Network + conditional 
Generative Adversarial Network (GAN)

• Deep learning framework to sample “realistic” baryon maps for given DM maps
p(Σgas |ΣDM)

Bernardini, RF, et al. 2022, arXiv:2110.11970

https://arxiv.org/abs/2110.11970
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Emulating observational data on the field level

Input Output Posterior Note Reference

Noise HI field Yes 3-d, Δx~35 kpc/h Zamudio-Fernandez et al. 
2019

DM map, 
Noise

electron pressure 
map Yes 2d, Δx~200 kpc/h, 

tSZ Tröster et al. 2019

DM field elec. pressure, density, 
momentum fields No 3d, Δx~100 kpc, tSZ, 

kSZ Thiele et al. 2020

DM field HI field No 3d, Δx~140 kpc/h Wadekar et al. 2021

DM field gas density, temp., 
velocity field No 3d, Δx~20 kpc/h Harrington et al. 2021

DM field, 
Noise

gas density, temp., 
velocity field Yes 3d, Δx~40 kpc/h Horowitz et al. 2021

DM maps HI maps Yes 2d, Δx~400 kpc/h Hassan et al. 2022

DM maps HI maps, gas maps Yes 2d, Δx~3.6 kpc/h Bernardini et al. 2022

DM maps, 
l.o.s. velocities

gas maps, temp., 
velocity, HI maps Yes 2d,  

variable resolution Bernardini et al. in prep

EMBER

EMBER-2
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Simulation data

fire.northwestern.edu

• Simulations run with GIZMO, FIRE-2 physics

rotation for visualization purposes only
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• L = 22 cMpc 
• 2 billion (gas+DM) particles 
• mb ~ 6 x 104 M☉, Δx ~ tens of pc

FIREbox (RF et al. 2023 arXiv:2205.15325)

https://arxiv.org/abs/2205.15325


Robert Feldmann, University of Zurich Swiss SKA Days 2023 6

Simulation data

fire.northwestern.edu

• Simulations run with GIZMO, FIRE-2 physics

rotation for visualization purposes only

©
 R

. 
F

e
l
d

m
a
n

n
, 

U
n

iv
e
r

s
it

y
 o

f
 Z

u
r

ic
h

• 2 kinds of simulations:
Cosmological volume Cosmological zoom-in

©
 P

. 
H

o
p
k
in

s
, 

C
a
l
te

c
h

• L = 22 cMpc 
• 2 billion (gas+DM) particles 
• mb ~ 6 x 104 M☉, Δx ~ tens of pc

FIREbox (RF et al. 2023 arXiv:2205.15325)

• ~few cMpc region 
• 4 massive halos 
• mb ~ 3 x 104 M☉, Δx ~ tens of pc

MassiveFIRE (RF+2016, Angles-Alcazar+2017)

https://arxiv.org/abs/2205.15325
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From FIRE to EMBER

Step 1: Create slices for different projections of HI & DM 

slices
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From FIRE to EMBER

Step 2: Project HI and DM density fields

Step 1: Create slices for different projections of HI & DM 

1 2 3 …

Step 3: Extract 512x512 pixel tiles randomly

4
5

6
7

8
1 2 3 …

DM

HI

1 2
3

slices
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Basic conditional GAN
EMBER is a conditional GAN

• Generator G and Discriminator D networks compete in an adversarial game 
• G tries to deceive D ⇔ D tries to spot images generated by G
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Basic conditional GAN
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EMBER is a conditional GAN
• Generator G and Discriminator D networks compete in an adversarial game 
• G tries to deceive D ⇔ D tries to spot images generated by G
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EMBER is a conditional GAN
• Generator G and Discriminator D networks compete in an adversarial game 
• G tries to deceive D ⇔ D tries to spot images generated by G
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Step 3: Continue with step 1
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Bernardini, RF, et al. 2022, arXiv:2110.11970

A detailed view of the EMBER architecture 
Fiducial architecture

• Fully convolutional Generator = U-Net with noise injection 
• conditional GAN using multi-scale mapping 

• Cost function: • perceptual loss based on image similarity index & MSLE 
• Wasserstein metric for adversarial loss (WGAN)

DM

HI

• normalization scheme: 

https://arxiv.org/abs/2110.11970
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How well does it work?

DM

500 ckpc/h

200 ckpc/h

50 ckpc/h

HI

EMBER
pure U-NET

Simulation (z=2)
WGAN WGAN WGAN
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How well does it work?

HI CDDF

 PowerspectrumΣHI
 BispectrumΣHI

Sim
EMBER dmo
EMBER dmh

• Agreement to within 10-20% down to galactic scales!
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How well does it work?

HI CDDF

 PowerspectrumΣHI
 BispectrumΣHI

Sim
EMBER dmo
EMBER dmh

• Agreement to within 10-20% down to galactic scales!

• Reproduces (projected) HI 
masses in halos and 
scatter!

EMBERSim
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Upscaling

HI CDDF

 PowerspectrumΣHI
 BispectrumΣHI

EMBER dmo ds
Sim
EMBER dmh ds
EMBER dmo native

MR  HR→

• 10-20% accurate when using 64x lower resolution DM maps

• Goal: create high-resolution HI maps from low resolution DM simulations
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Upscaling
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Next steps
EMBER • Training comparably expensive (~1 GPU-week) 

• Makes predictions for fixed redshift 
• Makes prediction for fixed output resolution 
• Only single output (e.g., HI mass map or gas mass map)
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Next steps
EMBER • Training comparably expensive (~1 GPU-week) 

• Makes predictions for fixed redshift 
• Makes prediction for fixed output resolution 
• Only single output (e.g., HI mass map or gas mass map)

6.4 Results 129

Figure 6.10: Overview figure showing the total gas output of the EMBER-2 model for a dark matter test region in the FIREbox
simulation at ! = 1. Individual high density regions are shown as insets to emphasize the high pixel resolution of the emulation.
In the bottom right inset we show the multi-grid data structure of the refinement process. For this figure the following set of
example thresholds were used in the upscaling procedure: level 0→1 at 35!, level 1→2 at 180! and level 2→3 at 850! (where
! ≡ 103M#ℎ−1/ckpc2). For better visibility, we integrate the prediction of 5 subsequent slices along the line of sight.

the mean value between the scaled and unscaled fields is indeed not
conserved. As a consequence, the renormalization step guarantees an
exact conservation only in the scaled domain, but not for the unscaled
fields. Generally, the error in the unscaled domain is of order 0.1% and
never exceeds the 1% threshold over the entire redshift range. We have
investigated renormalizing the unscaled fields but found that the neural
network consistently diverges, presumably due to the large gradients in
the back-propagation originating from the unscaled domain.

Power gain Downsampling operations erase small scale features below the
pixel scale. One part of the refinement task is to emulate high-frequency
features from the injected noise. In this sense, the refinement model injects
a certain amount of power into the image, which can be compared to the
amount of power that is lost in the downsampling operation. To investigate
this capability of the model, we upscale the 128 realizations per redshift
from the base prediction (level 0) to the highest resolution (level 3) via the
refinement model. Subsequently, the cross-power between low and high
resolution fields is measured for both the emulation and simulation. From
these cross-power coefficients we define the following ratio

" = median
(
#$̃3

#$̃0
×
#%̃0

#%̃3

)
,where (6.15)

##0 and ##3 are the power spectra for the level 0 and level 3 fields #0 and

• Improved version of EMBER 
• multi-redshift, multi-scale, multi-field 

• faster & leaner, more versatile

EMBER-2 Bernardini, RF, in prep
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Challenges for EMBER-2

Achieving multi-redshift capability 
Coupling between DM and HI strongly redshift dependent, 
network would become too large if using standard convolutions
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Solution:
Inject the global context information (redshift) directly into the modulation 
of the convolution kernel (Style2-GAN approach)
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Challenges for EMBER-2

Achieving multi-redshift capability 

Changing “redshift” while keeping DM map fixed

Coupling between DM and HI strongly redshift dependent, 
network would become too large if using standard convolutions
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Challenges for EMBER-2

Achieving multi-scale capability 

Normally trade-off between learning for high-resolution and including large 
environment given fixed tile size during training
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Challenges for EMBER-2

Achieving multi-scale capability 

Normally trade-off between learning for high-resolution and including large 
environment given fixed tile size during training

Resolution level injected as context information (Style2-GAN) directly into the 
modulation of the convolution kernel of the refinement network

Combine base network which learns large scale features and a refinement network 
which adds small-scale features given large scale features

Solution:

120 6 EMBER-2

Figure 6.4: Schematic overview of the training algorithm performed to learn across multiple resolution levels. a) A concrete example
of how the data is processed in a single training loop. First, the generator !1 (from NNbase) performs the coarse base mapping from
the dark matter variable " to the gas domain #. This mapping is operating on images of resolution level 0 and at a pixel size of 642.
With the discriminator $1 the loss functions %1 are computed by means of equations 6.4 and 6.6 to update NNbase. The trained base
network NNbase is then used as the auxiliary network in the training process of the refinement network NNref by providing the base
predictions on the coarsest resolution level. Whenever the data is passed to the generator !2 of NNref, it is first processed by an
extraction function, denoted & in the figure. This extraction function includes the following steps. First, the image from the base
prediction is split into 16 patches with no overlap (an example patch of pixel sizes 162 is shown as an orange square). Next, by
means of a criterion function we determine the patch that we want to refine, in our case the patch with the highest density pixel.
This patch is then upsampled by bilinear interpolation with a factor of 4, i.e. the data input size to !2 is always 642. This procedure
is summarized in the pseudo-code cell of panel b). For each refinement level the loss functions are computed and back-propagated
individually, such that training on a certain resolution level is independent from the previous predictions.

[24]: Thiele et al. (2020)
[278]: Wadekar et al. (2021)

a real tuple (" , # , '2) and a fake tuple (" , '1 , '2) with the corresponding
labels. Both vectors are subsequently used to train the discriminator, where
the loss function now has the form

($ = +!!1 ,!2 [$('1 , '2 |"))] − !# ,!2 [$(# , '2 |")] (6.6)

If ! now ignores the noise variables, then '1 ≈ '2 and the discrimination
for $ becomes trivial. Hence, the feedback from $ forces ! to include the
noise variable in the synthesis process to learn the distribution of possible
realizations, such that '1 ! '2.

Training

For the training process we prepare individual data samples in the following
way. First, as briefly described in section 6.2, we deposit the gas particle
density data onto four uniform grids with increasing pixel resolutions.
The resolutions are increased by a factor of 4 between subsequent levels,
while only the coarsest resolution field is used for the dark matter density.
More concretely, the dark matter field has a pixel resolution of 29 ckpc/ℎ
while the gas fields have pixel resolutions of 29, 7.2, 1.8 and 0.45 ckpc/ℎ as
shown in figure 6.1.

Training NNs is greatly improved when the data values are of O(1). As
pointed out in many works before [24, 278] the choice of the data normal-
ization scheme plays an important role for the task of predicting cosmic
fields with correct statistics. Depending on the cumulative distribution
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Challenges for EMBER-2

Achieving multi-field capability 
• Consistency between output fields, e.g., temperature, density etc. 
• Enable additional input fields (ΣDM, vrad

DM) → (Σgas, vrad
gas, Tgas, ΣHI)
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Challenges for EMBER-2

Achieving multi-field capability 
• Consistency between output fields, e.g., temperature, density etc. 
• Enable additional input fields (ΣDM, vrad

DM) → (Σgas, vrad
gas, Tgas, ΣHI)

Solution:
136 7 EMBER-2 multi-field: extending to multiple baryon fields

Figure 7.1: Overview figure showcasing the target fields for the multi-field approach (the data shown is extracted from the FIREbox
simulation at ! = 1.76). Each pair of panels shows the simulated and emulated fields from the FIREbox simulation and the EMBER-2
model respectively. A video version of the above comparison can be found at the official EMBER-2 website.

7.1 Introduction

In section 3.3.2 we reviewed key aspects of how different baryon channels
are used in observations to improve our knowledge about galaxies and
cosmic gas. Observational efforts, such as the upcoming SKA, use e.g. the
distribution of the cold gas phase in the radio regime to decipher the for-
mation mechanisms of galaxies. These mechanisms include environmental
effects inferred from kinematic studies as well fundamental astrophysics
such as the feedback from AGNs. Building emulators that can quickly
produce mock maps of many baryon channels, such as e.g. radial velocity
or HI density fields, will play an important role for connecting observations
with theoretical predictions from simulations.

In previous chapters, we argued that DL, with its remarkable capacity to
learn intricate patterns from large datasets, can provide a bridge between
raw data and the hidden relations governing galaxy formation. In this
chapter, we expand our DL methodology to learn more complex corre-
lations between the dark matter and the baryon sector. Concretely, we
create a model that encapsulates many aspects of cosmic and galactic
dynamics by learning the relation between the (projected) dark matter
phase space and multiple baryon channels including different gas phases,
the temperature field and kinematics through the velocity field. These
fields all play a vital role in observations, such as the SKA, which is the
main motivation for this approach. A model that is capable of learning how
the concentration of dark matter influences the density of neutral hydrogen
and how gas temperature responds to local gravitational perturbations is
much harder to train, since individual synthesized baryon channels must
be synchronized.

Conceptually straightforward: Include extra fields as additional channels

Sim EMBER-2 Sim EMBER-2 Sim EMBER-2 Sim EMBER-2
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# params [1e6] Training time [d] Inference time Redshift Tilesize

EMBER-1 80 7 minutes z=2 fixed 1.8 cMpc/h

EMBER-2 18 2 seconds z=12 to 1 1.8 cMpc/h

• EMBER 2.0 significantly leaner, faster

First look at EMBER-2 performance
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6.4 Results 125

Figure 6.5: a) Summary grid showcasing visually the performance of the base model (level 0) across the trained redshift range. The
first row shows example patches of evolving dark matter fields. The second and third row show the simulated and emulated gas
respectively. The emulated realizations were produced with a fixed random seed, i.e. fixed ! to highlight that the NN model has
successfully learned to emulate gas fields for different redshift slices. b) Visual result of the analysis conducted when smoothly
varying the noise variable ! for a total of 128 realizations. The figures show the pixel-wise standard deviation highlighting regions
that are subject to large changes between different realizations (brighter colors indicate higher standard deviation). Note how the
noise impacts larger scales for decreasing redshift. This behaviour indicates a weaker correlation between the dark matter and gas
fields for decreasing redshifts in agreement with the simulation (figure 6.2). c) For this panel we fix the dark matter input ! (as
seen in the very left subfigure) and the noise variable ! and smoothly create samples to varying redshifts " through the context
tuple. Note how the gas emulation closely follows the dark matter field at high redshifts. For low redshifts the gas emulation is
increasingly smoothed, corresponding to regions in or around cosmic voids.

Figure 6.6: Boxplots of the percentage error on the mass conservation and baryon fraction analysis across redshifts, where the
medians of the distributions are shown in green and blue. Note that for the baryon fraction we show the local (patch-wise) errors
whereas the mass error is based in individual slices.

• Visually accurate predictions for any redshift z=1-12



Robert Feldmann, University of Zurich Swiss SKA Days 2023 19

First look at EMBER-2 performance

• Excellent mass conservation for slices (~1%)

6.4 Results 125

Figure 6.5: a) Summary grid showcasing visually the performance of the base model (level 0) across the trained redshift range. The
first row shows example patches of evolving dark matter fields. The second and third row show the simulated and emulated gas
respectively. The emulated realizations were produced with a fixed random seed, i.e. fixed ! to highlight that the NN model has
successfully learned to emulate gas fields for different redshift slices. b) Visual result of the analysis conducted when smoothly
varying the noise variable ! for a total of 128 realizations. The figures show the pixel-wise standard deviation highlighting regions
that are subject to large changes between different realizations (brighter colors indicate higher standard deviation). Note how the
noise impacts larger scales for decreasing redshift. This behaviour indicates a weaker correlation between the dark matter and gas
fields for decreasing redshifts in agreement with the simulation (figure 6.2). c) For this panel we fix the dark matter input ! (as
seen in the very left subfigure) and the noise variable ! and smoothly create samples to varying redshifts " through the context
tuple. Note how the gas emulation closely follows the dark matter field at high redshifts. For low redshifts the gas emulation is
increasingly smoothed, corresponding to regions in or around cosmic voids.

Figure 6.6: Boxplots of the percentage error on the mass conservation and baryon fraction analysis across redshifts, where the
medians of the distributions are shown in green and blue. Note that for the baryon fraction we show the local (patch-wise) errors
whereas the mass error is based in individual slices.

6.4 Results 125

Figure 6.5: a) Summary grid showcasing visually the performance of the base model (level 0) across the trained redshift range. The
first row shows example patches of evolving dark matter fields. The second and third row show the simulated and emulated gas
respectively. The emulated realizations were produced with a fixed random seed, i.e. fixed ! to highlight that the NN model has
successfully learned to emulate gas fields for different redshift slices. b) Visual result of the analysis conducted when smoothly
varying the noise variable ! for a total of 128 realizations. The figures show the pixel-wise standard deviation highlighting regions
that are subject to large changes between different realizations (brighter colors indicate higher standard deviation). Note how the
noise impacts larger scales for decreasing redshift. This behaviour indicates a weaker correlation between the dark matter and gas
fields for decreasing redshifts in agreement with the simulation (figure 6.2). c) For this panel we fix the dark matter input ! (as
seen in the very left subfigure) and the noise variable ! and smoothly create samples to varying redshifts " through the context
tuple. Note how the gas emulation closely follows the dark matter field at high redshifts. For low redshifts the gas emulation is
increasingly smoothed, corresponding to regions in or around cosmic voids.

Figure 6.6: Boxplots of the percentage error on the mass conservation and baryon fraction analysis across redshifts, where the
medians of the distributions are shown in green and blue. Note that for the baryon fraction we show the local (patch-wise) errors
whereas the mass error is based in individual slices.



Robert Feldmann, University of Zurich Swiss SKA Days 2023 19

First look at EMBER-2 performance

• Excellent agreement for the pixel probability density functions
126 6 EMBER-2

Figure 6.7: Pixel probability density functions for the simulated and emulated slices of surface gas density Σ across the entire
redshift range.

Figure 6.8: Results of the conducted analysis of the three different spectral metrics, power spectrum !, cross-power spectrum
!× and cross-correlation coefficient ". Shown is the relative percentage error ! between the simulated and modified fields, while
keeping the pixel pdf of the fields the same. Clearly, the cross-correlation coefficient is almost unchanged during the permutation
analysis, while the cross-power and especially the power spectrum change by orders of 10% (at # = 0) rendering them unusable as a
metric for our specific spectral analysis of the base network.

Cross-correlations Many works adopt the power spectrum as a funda-
mental metric to analyse higher order moments of predicted and true
fields. Due to the small box size, the power spectrum is highly sensitive to
individual pixel values and thus not a good metric to evaluate the statistical
performance of the model. In the following, we show an exemplary test
highlighting that the cross-correlation coefficient "($) is a better measure
to quantify the spatial correlations captured by the model.

Having a robust spectral metric for machine learning applications, is a
fundamental tool to measure the capabilities of the neural networks. Due
to the small boxsize of the simulations in our training set, it turns out that
the power spectrum is not a good metric, since for small cosmological
volumes it is disproportionally sensitive to the few high density pixels in
the simulation. However, it is a priori not clear whether other quantities
like the cross-power spectrum (here between dark matter and total gas
densities) and the cross-correlation coefficient are equally affected. As it
turns out, the power spectrum is not just sensitive to the values of the
important pixels, but also on the spatial distribution of them. To this end,
we design the following test to quantify how suitable the power spectrum
!, the cross-correlation % and the cross-correlation coefficient " are as
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• What about higher order statistics?
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Figure 6.7: Pixel probability density functions for the simulated and emulated slices of surface gas density Σ across the entire
redshift range.

Figure 6.8: Results of the conducted analysis of the three different spectral metrics, power spectrum !, cross-power spectrum
!× and cross-correlation coefficient ". Shown is the relative percentage error ! between the simulated and modified fields, while
keeping the pixel pdf of the fields the same. Clearly, the cross-correlation coefficient is almost unchanged during the permutation
analysis, while the cross-power and especially the power spectrum change by orders of 10% (at # = 0) rendering them unusable as a
metric for our specific spectral analysis of the base network.

Cross-correlations Many works adopt the power spectrum as a funda-
mental metric to analyse higher order moments of predicted and true
fields. Due to the small box size, the power spectrum is highly sensitive to
individual pixel values and thus not a good metric to evaluate the statistical
performance of the model. In the following, we show an exemplary test
highlighting that the cross-correlation coefficient "($) is a better measure
to quantify the spatial correlations captured by the model.

Having a robust spectral metric for machine learning applications, is a
fundamental tool to measure the capabilities of the neural networks. Due
to the small boxsize of the simulations in our training set, it turns out that
the power spectrum is not a good metric, since for small cosmological
volumes it is disproportionally sensitive to the few high density pixels in
the simulation. However, it is a priori not clear whether other quantities
like the cross-power spectrum (here between dark matter and total gas
densities) and the cross-correlation coefficient are equally affected. As it
turns out, the power spectrum is not just sensitive to the values of the
important pixels, but also on the spatial distribution of them. To this end,
we design the following test to quantify how suitable the power spectrum
!, the cross-correlation % and the cross-correlation coefficient " are as
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Figure 6.9: Errors on the cross-correlation between dark matter and gas for individual redshifts (indicated in the bottom left corner
of each plot). The shaded area and thick lines represent the 16th to 84th percentile and the median at each !-scale, and the grey
band indicates the 5% error band.

[299]: Harder et al. (2022)

6.4.2 Refinement model

The generative part of the refinement model ("2) learns to upsample coarse
gas predictions from the base network. This process is done iteratively until
the finest resolution level is reached. This process solves the multi-scale
Super-Resolution problem in a generative fashion. In the training process
we made use of an extractor function #, which selects the high density
regions in the training process. This approach is especially attractive as it
does not impose a threshold deciding when to refine a certain region. In
figure 6.10 we show an emulated field of galaxies where an example set of
thresholds was used and as a consequence the multi-grid data structure is
clearly visible.

Statistical metrics

Mass conservation Due to the induced noise variable !, responsible
for injecting small scale features, the pixel values of the field can be
slightly changed in the upscaling emulation process. This poses a challenge
regarding basic physical constraints such as the mass conservation across
resolution scales, as the neural network is a priori not constrained to
conserve the mass between low and high resolution patches. To enforce
mass conservation we make use of a renormalization step first presented
in [299], that introduced a post-processing layer designed to conserve the
mean values of input and output images. More concretely, the increased
resolution field $%+1 is rescaled with the mean value of the lower resolution
input $% as follows,

$%+1 → $%+1 ×
〈$%〉
〈$%+1〉

, (6.14)

which ensures that 〈$%+1〉 = 〈$%〉. In this manner, the mass is conserved
between individual refinement steps. However, it is important to highlight
the effect of the transformation in equation 6.7, that transforms the physical
fields from the physical domain $̃ to a scaled version $ for the training of the
neural networks. Through the non-linear behaviour of the transformation,

Note that the renormalization step is applicable to other fields than mass, since it guarantees
that the mean value of any field is conserved.
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6.4.2 Refinement model

The generative part of the refinement model ("2) learns to upsample coarse
gas predictions from the base network. This process is done iteratively until
the finest resolution level is reached. This process solves the multi-scale
Super-Resolution problem in a generative fashion. In the training process
we made use of an extractor function #, which selects the high density
regions in the training process. This approach is especially attractive as it
does not impose a threshold deciding when to refine a certain region. In
figure 6.10 we show an emulated field of galaxies where an example set of
thresholds was used and as a consequence the multi-grid data structure is
clearly visible.

Statistical metrics

Mass conservation Due to the induced noise variable !, responsible
for injecting small scale features, the pixel values of the field can be
slightly changed in the upscaling emulation process. This poses a challenge
regarding basic physical constraints such as the mass conservation across
resolution scales, as the neural network is a priori not constrained to
conserve the mass between low and high resolution patches. To enforce
mass conservation we make use of a renormalization step first presented
in [299], that introduced a post-processing layer designed to conserve the
mean values of input and output images. More concretely, the increased
resolution field $%+1 is rescaled with the mean value of the lower resolution
input $% as follows,

$%+1 → $%+1 ×
〈$%〉
〈$%+1〉

, (6.14)

which ensures that 〈$%+1〉 = 〈$%〉. In this manner, the mass is conserved
between individual refinement steps. However, it is important to highlight
the effect of the transformation in equation 6.7, that transforms the physical
fields from the physical domain $̃ to a scaled version $ for the training of the
neural networks. Through the non-linear behaviour of the transformation,
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 ➜ Cross-correlation reproduced to better than ~5% at z=1-12 up to ~50 ckpc

• Better performance metric: cross correlation between DM map and gas map: 
r(k) = P×

dm,g/(PdmPg)1/2

base network! 
(Δx ∼ 30 ckpc/h)
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Summary

• EMBER: stochastic, conditional, convolutional GAN that learns baryon maps from 
cosmological, hydrodynamical simulations; trained on FIRE simulations 

• 10-20% accurate mapping down to galactic scales (~tens of kpc) for CDDF, 
powerspectrum, and bispectrum 

• Entirely halo-free method, but can make accurate predictions for halo based 
properties (including scatter) down to low halo masses; upscaling to large volumes

• Deep Learning techniques can reduce computational cost of calculating baryonic 
fields compared with high-resolution (hydrodynamical) simulations

• EMBER-2: upgraded version of EMBER with new architecture 

• Adds multi-redshift, multi-scale, and multi-field capabilities 

• Faster to train, faster to run, more versatile


