Fast Simulation of Cosmological Neutral Hydrogen with a Halo Model Approach

Pascal Hitz
ETHZ Cosmology Group† in collaboration with FHNW Group ††

Swiss SKA Days 08.09.2023

† Alexandre Refregier, Pascale Berner, Devin Crichton, John Hennig, Luis Fernando Machado Poletti Valle, Joël Mayor, Marta Spinelli, Jennifer Studer

†† André Csillaghy, Simon Felix, Lukas Gehrig, Filip Schramka, Rohit Sharma, Vincenzo Timmel
Overview

• Fast and large volume simulations of neutral hydrogen (HI) distribution
• Test instrument simulation and analysis pipeline to measure the HI emission
PINOCCHIO: Dark Matter Halo Simulation

• Monaco et al. (2002, 2013), Taffoni et al. (2002), Munari et al. (2017)
• Lagrangian Perturbation Theory
• Collapsed points grouped into halos, hierarchical growth
• Catalog of dark matter halos
• Much faster than N-body
Current Setting of DM Simulations

• 500 Mpc/h box size
• 2048^3 simulation particles
• ≥ 10 particles per halo $\leftrightarrow \geq 1.27 \times 10^{10} \, M_\odot /h$

$\rightarrow 20 - 30\%$ HI mass missing

• Lightcone settings:
 - Frequency range: 700 – 800 MHz \leftrightarrow Redshift 0.77 – 1.03
 - Half sky

• Euler Cluster of ETHZ (CPU) with MPI parallelization
 - 1032 cores over 39 nodes
 - 2.75 TB RAM, 332 CPU h runtime
Halo Model for Cosmological HI

HI-halo mass relation fitted to observations:

\[M_{\text{HI}}(M, z) = \alpha f_{\text{HI}} M \left(\frac{M}{10^{11} h^{-1} M_\odot} \right)^{\beta} \exp \left[-\left(\frac{v_{c,0}}{v_c(M, z)} \right)^3 \right] \]

Padmanabhan et al. 2017

- More massive halos contain more HI
- **But:** Many more small halos than large ones
 - Important not to neglect small halos.
Relative Loss of Total HI Mass

Relative loss as fct. of z for different M_{min}

- $M_{\text{min}} = 10^9 \, M_\odot$/h
- $M_{\text{min}} = 10^{9.5} \, M_\odot$/h
- $M_{\text{min}} = 10^{10} \, M_\odot$/h
- $M_{\text{min}} = 1.27 \cdot 10^{10} \, M_\odot$/h
- $M_{\text{min}} = 1.5 \cdot 10^{10} \, M_\odot$/h
- $M_{\text{min}} = 10^{11} \, M_\odot$/h
Brightness Temperature Maps

- Redshift:
 - 0.8
 - 0.9
 - 1.0

- Frequency:
 - 800 MHz
 - 750 MHz
 - 700 MHz

- Temperature:
 - 0.03 mK
 - 0.50 mK

- Δf = 5 MHz
- Δz ~ 0.01
HI Angular Power Spectrum

Simulation:

\[\delta_{HI} = (T_{HI} - \bar{T}_{HI}) / \bar{T}_{HI} \]

\[\langle \delta_{HI, \ell m} \delta_{HI, \ell' m'}^* \rangle = \delta_{\ell \ell'}^D \delta_{mm'}^D C_{\ell, HI} \]

Limber Approximation:

\[C_{\ell, HI} \approx \int dz \frac{c}{H(z)} \frac{W^2(z)}{r(\chi(z))^2} P_{HI} \left(\ell + \frac{1}{2}, r(\chi(z)), z \right) \]

Refregier et al. 2017
HI Angular Power Spectrum

Simulation:

\[\delta_{HI} = \frac{T_{HI} - \bar{T}_{HI}}{\bar{T}_{HI}} \]
\[\langle \delta_{H1,\ell m} \delta_{H1,\ell' m'}^* \rangle = \delta_{\ell \ell'}^D \delta_{mm'}^D C_{\ell,HI} \]

Limber Approximation:

\[C_{\ell,HI} \approx \int dz \frac{c}{H(z)} \frac{W^2(z)}{r(\chi(z))^2} P_{HI}(\ell + 1/2, z) \]

Full Expression:

\[C_{\ell,HI} = \frac{2}{\pi} \int k^2 dk \int_0^\infty d\chi W(\chi) j_\ell(k\chi) \sqrt{P_{HI}(k, z(\chi))} \]
\[\times \int_0^\infty d\chi' W(\chi') j_\ell(k\chi') \sqrt{P_{HI}(k, z(\chi'))} \]
HI Power Spectrum

$P_{HI}(k, z = 1.0220)$

$P_{HI}(k)$ vs. k (Mpc$^{-1}$)

- Simulation
- PyCosmo Halo Model

<table>
<thead>
<tr>
<th>Rel. Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ positive</td>
</tr>
<tr>
<td>- negative</td>
</tr>
</tbody>
</table>

Snapshot at $z = 1.022$
HI Angular Power Spectrum

Full Expression:

\[C_{\ell, \text{HI}} = \frac{2}{\pi} \int_0^\infty k^2 \, dk \int_0^\infty d\chi \, W(\chi) j_\ell(k\chi) \sqrt{P_{\text{HI}}(k, z(\chi))} \times \int_0^\infty d\chi' \, W(\chi') j_\ell(k\chi') \sqrt{P_{\text{HI}}(k, z(\chi'))} \]
Instrument Simulation and Analysis Pipeline

Number of dishes: 36 (6 x 6 grid)
Operating mode: Drift-scan
Dish diameter: 6 m
Dish separation: 6 m
Primary Beam Type: Gaussian
Telescope Latitude: 45°

- Construct instrument model
- Generate synthetic data: Visibilities
- Map Making

Simplified HIRAX array configuration

Recovered Map

Angular Power Spectrum

0 mK 0.5806
Recovered HI Angular Power Spectrum

\[f \text{ [MHz]} \in [700, 705] \text{ or } z \in [1.015, 1.029] \]

\[f \sim \frac{2\pi f}{c} b \]

\[\ell_{\text{max}}(700 \text{ MHz}) \sim 620 \]

\[\ell_{\text{E-W}}(700 \text{ MHz}) \sim 440 \]
Summary

• Simulation pipeline of HI maps for intensity mapping
• Apply it to HIRAX and SKA/MeerKAT
• Theoretical predictions of power spectrum
• Future developments:
 – Increase mass resolution
 – Vary cosmology and astrophysics (HI-Halo mass relation)
 – Consider foregrounds, noise and RSD
 – Cross-correlations with other probes

Hitz et al. (in prep.)
Backup Slides
PyCosmo HI Halo Model: Angular Power Spectrum

\[C_{\ell,\text{HI}} \approx \int dz \frac{c}{H(z)} \frac{W^2(z)}{r(\chi(z))}^2 P_{\text{HI}} \left(\frac{\ell + 1/2}{r(\chi(z))}, z \right) \]

\[P_{\text{HI}}(k) = P_{1\text{h,HI}}(k) + P_{2\text{h,HI}}(k) \]

\[P_{1\text{h,HI}} = \frac{1}{\bar{\rho}_{\text{HI}}^2} \int dM \frac{dn(M,z)}{dM} M_{\text{HI}}^2(M) |u_{\text{HI}}(k|M)|^2 \]

\[P_{2\text{h,HI}} = P_{\text{lin}}(k) \left[\frac{1}{\bar{\rho}_{\text{HI}}} \int dM \frac{dn(M,z)}{dM} M_{\text{HI}}(M) b(M) |u_{\text{HI}}(k|M)| \right]^2 \]