SKACH

SKAO

Fast Simulation of Cosmological Neutral Hydrogen with a Halo Model Approach

Pascal Hitz ETHZ Cosmology Group⁺ in collaboration with FHNW Group ⁺⁺

Swiss SKA Days 08.09.2023

[†] Alexandre Refregier, Pascale Berner, Devin Crichton, John Hennig, Luis Fernando Machado Poletti Valle, Joël Mayor, Marta Spinelli, Jennifer Studer

⁺⁺André Csillaghy, Simon Felix, Lukas Gehrig, Filip Schramka, Rohit Sharma, Vincenzo Timmel

Credit: SARAO, Heywood et al. (2022) / J.C. Muñoz-Mateos

Overview

- Fast and large volume simulations of neutral hydrogen (HI) distribution
- Test instrument simulation and analysis pipeline to measure the HI emission

PINOCCHIO: Dark Matter Halo Simulation

- Monaco et al. (2002, 2013), Taffoni et al. (2002), Munari et al. (2017)
- Lagrangian Perturbation Theory
- Collapsed points grouped into halos, hierarchical growth
- Catalog of dark matter halos
- Much faster than N-body

Current Setting of DM Simulations

- 500 Mpc/h box size
- 2048³ simulation particles

- $\rightarrow 20-30\%$ HI mass missing
- \geq 10 particles per halo $\leftrightarrow \geq$ 1.27 × 10¹⁰ M_{\odot}/h
- Lightcone settings:
 - − Frequency range: 700 800 MHz \leftrightarrow Redshift 0.77 1.03
 - Half sky
- Euler Cluster of ETHZ (CPU) with MPI parallelization
 - 1032 cores over 39 nodes
 - 2.75 TB RAM, 332 CPU h runtime

Halo Model for Cosmological HI

HI-halo mass relation fitted to observations:

$$M_{\rm HI}(M,z) = \alpha f_{\rm H,c} M \left(\frac{M}{10^{11} h^{-1} M_{\odot}}\right)^{\beta} \exp\left[-\left(\frac{v_{\rm c,0}}{v_{\rm c}(M,z)}\right)^{3}\right]$$

Padmanabhan et al. 2017

Dark Matter Neutral Hydrogen

- More massive halos contain more HI
- But: Many more small halos than large ones
- ➔ Important not to neglect small halos.

Relative Loss of Total HI Mass

Brightness Temperature Maps

HI Angular Power Spectrum

HI Angular Power Spectrum

HI Angular Power Spectrum

Instrument Simulation and Analysis Pipeline

Recovered HI Angular Power Spectrum

Summary

- Simulation pipeline of HI maps for intensity mapping
- Apply it to HIRAX and SKA/MeerKAT
- Theoretical predictions of power spectrum
- Future developments:
 - Increase mass resolution
 - Vary cosmology and astrophysics (HI-Halo mass relation)
 - Consider foregrounds, noise and RSD
 - Cross-correlations with other probes

Hitz et al. (in prep.)

Backup Slides

PyCosmo HI Halo Model: Angular Power Spectrum

$$C_{\ell,HI} \approx \int dz \frac{c}{H(z)} \frac{W^2(z)}{r(\chi(z))^2} P_{\rm HI}\left(\frac{\ell+1/2}{r(\chi(z))}, z\right)$$

$$P_{\rm HI}(k) = P_{\rm 1h,HI}(k) + P_{\rm 2h,HI}(k)$$

$$P_{1h,HI} = \frac{1}{\bar{\rho}_{HI}^2} \int dM \frac{dn(M,z)}{dM} M_{HI}^2(M) |u_{HI}(k|M)|^2$$

$$P_{2h,HI} = P_{lin}(k) \left[\frac{1}{\bar{\rho}_{HI}} \int dM \frac{dn(M,z)}{dM} M_{HI}(M) b(M) |u_{HI}(k|M)| \right]^2$$

