Application of Wavelet Based Statistics for Enhanced 21cm Parameter Constraints <u>I. Hothi</u>, E. Allys, B. Semelin, F. Boulanger

The Spherically-Averaged 3D Power spectrum

The need for 3D? 2+1 Statistics

2+1 Statistics

Consider a 2+1 statistic with the tools we have Coefficient

Consider a 2+1 statistic with the tools we have

Power Spectrum

• For our binning of the 2D power spectrum, they are concentric circles:

The power spectrum can be written as: $\int_{k}^{k_{max}} |\tilde{I}(\vec{k}) \cdot W_k(\vec{k})|^2 d\vec{k}$

Wavelet Moments

• Definition of a wavelet moment: $\int_{\mathbb{T}^3} |I(\vec{x}) * \psi_j(\vec{x})|^q d\vec{x}$

- q > 0
- When using wavelet statistics, an important question arises: what is the best wavelet to have? What probes the spatial resolutions of interest?
- Let's use the inverse Fourier transform of the binning function as our wavelet: $M_q(i) = \int_{\mathbb{D}^3} |I(\vec{x}) * \tilde{W}_i(\vec{x})|^q d\vec{x}$
- In this work we use q = 1 and q = 2.

Wavelet Moments

- In this work we use q = 1 and q = 2.
- To decorrelate the two moments, we normalise as:

$$\bar{M}_1(i) = \frac{M_1(i)}{\sqrt{M_2(i)}}$$

Wavelet Scattering Transforms

- Wavelet transforms are a mathematical tool that allows for localised scales and positions within the data.
- transforms and the application of the modulus operator, resulting in the generation of a collection of scattering coefficients.
- The coefficients are constructed layer by layer, and we consider only the coefficients of the first two layers.

representation of data by decomposing it into coefficients that describe different

• Wavelet Scattering Transforms are constructed by performing a series of wavelet

Wavelet Scattering Transforms

• The first layer is constructed by convolving the 2D field I(x) with a family of wavelets ψ_{λ_1} and applying a modulus non-linearity: $S_1(\lambda_1) = \frac{1}{\mu_1} \int |I^* \psi_{\lambda_1}|(\mathbf{x}) d^2 \mathbf{x}$

wavelets ψ_{λ_2} and applying another modulus non-linearity, where $\lambda_1 > \lambda_2$:

$$S_2(\lambda_1, \lambda_2) = \frac{1}{\mu_2} \int ||I^* \psi_{\lambda_1}|^* \psi_{\lambda_2}(\mathbf{x}) d^2 \mathbf{x}$$

• The second layer is constructed by convolving the field again with another family of

• To take into account the variability of S_2 due to the amplitude of the first wavelet convolution, we follow the usual normalisation by the first layer: $\bar{S}_2(\lambda_1, \lambda_2) = \frac{S_2(\lambda_1, \lambda_2)}{S_2(\lambda_1)}$

Wavelet Scattering Transforms • For one application, we use the complex Morlet wavelets:

Here, we dilate our wavelet on scales

region in Fourier space:

s of
$$2^{j}$$
: $\psi_{j,\theta}(\mathbf{x}) = 2^{-2j} \cdot \psi\left(2^{-j}\mathbf{r}_{\theta}^{-1}\mathbf{x}\right)$

• We then can rotate our wavelet, between 0 and π , we are probing a different

Wavelet Scattering Transforms

- Allys+19).
- This averaging is on the logarithm of the coefficients:

$$S_1^{iso} = \left\langle \log_2 \left(S_1(j_1, \theta_1) \right) \right\rangle_{\theta_1}$$

$$\bar{S}_2^{iso} = \left\langle \log_2 \left(\bar{S}_2(j_1, \theta_1, j_2, \theta_2) \right) \right\rangle_{\theta_1, \theta_2}$$

• For this family of wavelets with both angular and scalar dependence, we average over the angular dependence to retrieve completely isotropic features (RWST

Wavelet Scattering Transforms

 For our second application, we use th wavelet moments:

• For our second application, we use the same wavelets as the application of

Summarising Our LoS information

- To summarise this statistic, we consider applying a continuous wavelet: $\psi(t) = e^{-\frac{t^2}{2}}\cos(5t)$
- We dilate this wavelet by a factor of 2^{j_z} , to probe different scales.

$$\|x\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}$$

• Once we apply the Cosine Wavelets to each coefficient, we look to convert this information to a single number. To do this, we consider applying the ℓ^p -norm:

Our Statistics

	Wavelet + Scaling
$\left(\vec{k}\right)\left ^{2}d\vec{k}\right)$	3D Gaussian + Log10 binning
$k_k(\vec{k}) ^2 d\vec{k}$	2D Gaussian + Log10 binning
\vec{x}) * $\tilde{W}_i(\vec{x}) ^q d\vec{x}$	2D Gaussian + Log10 binning
$= \left\langle \log_2 \left(S_2(j_1, \theta_1, j_2, \theta_2) \right) \right\rangle_{\theta_1, \theta_2}$	Morlet + Dyadic
$(i_{2}) = \int I * \tilde{W}_{i_{1}} * \tilde{W}_{i_{2}} \mathbf{x} d^{2} \mathbf{x}$	2D Gaussian + Log10 binning

Simulation information

- We use 21cmFast for the simulation:
 - $200h^{-1}Mpc$ (128x256x256)
 - 128 freq. channels at SKA resolution
- We vary the following parameters:
 - T_{vir} : 50000 ± 5000 K
 - $R_{max} = 15 \pm 5$ Mpc
 - $\zeta = 30 \pm 5$

• Simulated between z = 8.82 (144.60 MHz) and z = 9.33 (137.46 MHz).

Fisher set up

- We use 400 simulations for each parameter change and 600 simulations Fiducial.
- We are fully convergent (<10% err) after our 400 simulations.
- We take the evolution of each at apply the decomposition over scales of 2^{j_z} :
 - j_z = 1,2,3,4 with the ℓ^2 -norm
 - j_z = 1,2 with the ℓ^1 and ℓ^2 -norm
- These provide a good condition number, for the noiseless case, i.e., the condition number is below $10^7\,$

Results

Our statistics will be denoted by $\phi_{l:j}^s$

s is the statistic

l is the summary used on the evolution

j are the scales that are summarised.

For example, $\bar{\phi}_{\ell^1,\ell^2:1,2}^{WM}$ represents the evolution-compressed wavelet moments, computed at j = 1 and j = 2 scales for both ℓ^1 and ℓ^2 norms.

Results: Noiseless

- Wavelet Moments provides the most accurate constraints on astrophysical parameters compared to other methods
- 2+1 statistics outperform the 3D power spectrum
- Wavelets-based statistics outperform the power spectra statistics

Statistics (Results are log ₁₀)	T _{Vir}	R _{Max}	ζ
(Results are 10610)		0.01	1.50
ϕ_{3D}^{IS}	7.42	2.01	1.50
$\bar{\phi}_{\ell^2:1,2,3,4}^{PS}$	7.25	2.05	1.37
$ar{\phi}^{PS}_{\ell^1,\ell^2:1,2}$	7.13	2.04	1.28
$\bar{\phi}^{WM}_{\ell^2:1,2,3,4}$	5.45	0.93	-0.22
$ar{\phi}^{WM}_{\ell^1,\ell^2:1,2}$	6.25	1.00	0.43
$\bar{\phi}^{WST_m}_{\ell^2:1,2,3,4}$	6.00	0.98	0.27
$ar{\phi}^{WST_m}_{\ell^1,\ell^2:1,2}$	5.99	1.01	0.30
$\bar{\phi}^{WST_w}_{\ell^2:1,2,3,4}$	5.81	0.58	-0.07
$ar{\phi}^{WST_w}_{\ell^1,\ell^2:1,2}$	5.79	0.60	-0.05

Table 5: We show the Cramer-Rao bounds for all of our summary statistics, in the case where we have no noise. The bound establishes a lower bound on the variance, i.e. the smallest uncertainty achievable for an unbiased estimate on a given parameter.

Fig. 4: Results from the Fisher analysis of the three different summary statistics of the 21cm signal, when 3 astrophysical parameter are varied, as we have noiseless data, considering cosmic variance as the only source of variance.

Top: The corner plot of our noiseless Fisher analysis, showing that $\bar{\phi}_{\ell^2:1,2,3,4}^{WM}$ providing the tightest contours. *Bottom:* The ±68% credibility intervals of our different astrophysical parameters, for each statistic. The ordering of the statistics is based on their performance, going from least constraining statistic (top) to most constraining (bottom).

Results: 100 hrs SKA nois

- \bullet In the high-noise case, WST_w provides the tightest constraints
- \bullet The dyadic scales of WST_m favour the more noise inflicted scales
- The 2+1 statistics, overall, produce the tightest constraints compared to the spherically averaged power spectrum

Statistics (Results are log)	T _{Vir}	R _{Max}	ζ
(Results are log ₁₀)			
ϕ_{3D}^{PS}	9.22	3.60	2.97
$\bar{\phi}_{\ell^2:1,2,3,4}^{PS}$	8.90	3.52	2.80
$ar{\phi}^{PS}_{\ell^1,\ell^2:1,2}$	8.68	3.24	2.56
$\bar{\phi}^{WM}_{\ell^2:1,2,3,4}$	8.16	2.84	2.27
$ar{\phi}^{WM}_{\ell^1,\ell^2:1,2}$	8.09	2.76	2.20
$\bar{\phi}^{WST_m}_{\ell^2:1,2,3,4}$	9.31	3.88	3.21
$ar{\phi}^{WST_m}_{\ell^1,\ell^2:1,2}$	9.22	3.78	3.12
$\bar{\phi}^{WST_w}_{\ell^2:1,2,3,4}$	7.31	1.73	1.29
$ar{\phi}^{WST_w}_{\ell^1,\ell^2:1,2}$	7.28	1.71	1.27

Table 6: We show the Cramer-Rao bounds for all of our summary statistics, in the case where we have 100 hours of SKA noise.

Fig. 5: The same as Fig. 4, but for 100 hours of SKA noise, where the noise is the dominant source of variance. We see now that WST_m is the worse performing statistic, and WST_w, with its with its evolution along the lightcone summarised by the ℓ^1 -norm and ℓ^2 -norm on scales $j_z = 1, 2$, which utilises wavelets derived from the power spectra binning provides the tightest contours.

Results: 1000 hrs SKA noise

- In the lower noise case, all 2+1 statistics outperform the spherically-averaged power spectrum
- WST_w continues to produce produce the tightest constraints
- The Wavelet-based statistics using wavelets derived from PS binning produce the tightest constraints.

Statistics	T _{Vir}	R _{Max}	ζ
(Results are log ₁₀)			
ϕ_{3D}^{PS}	8.82	2.77	2.24
$\bar{\phi}_{\ell^2:1,2,3,4}^{PS}$	7.85	2.74	1.94
$ar{\phi}^{PS}_{\ell^1,\ell^2:1,2}$	7.82	2.53	1.82
$ar{\phi}^{WM}_{\ell^2:1,2,3,4}$	7.56	2.36	1.70
$ar{\phi}^{WM}_{\ell^1,\ell^2:1,2}$	7.50	2.23	1.62
$\bar{\phi}^{WST_m}_{\ell^2:1,2,3,4}$	8.10	2.80	2.00
$\bar{\phi}^{WST_m}_{\ell^1,\ell^2:1,2}$	8.11	2.79	2.00
$\bar{\phi}^{WST_w}_{\ell^2:1,2,3,4}$	6.74	1.24	0.65
$ar{\phi}^{WST_w}_{\ell^1,\ell^2:1,2}$	6.69	1.24	0.63

Table 7: We show the Cramer-Rao bounds for all of our summary statistics, in the case where we have 1000 hours of SKA noise.

Conclusion

- power spectrum
- For the noiseless case, Wavelet Moments provides the tightest constraints
- In the two noise cases, high and low noise, WST_w provides the tightest constraint.

• The 2+1 statistics provide tighter constraints compared to the 3D spherically averaged