Application of Wavelet Based
Statistics for Enhanced 21cm
Parameter Constraints
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The Spherically-Averaged 3D Power spectrum
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The need for 3D?

2+1 Statistics
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The power spectrum can be written as: ,[ \7(7) - Wk(f) \zdf
kmin

e For our binning of the 2D power spectrum, they are concentric circles:




Wavelet Moments

_ Definition of a wavelet moment: J [I(X) *y (X)) |9d X
R3
e q >0
« When using wavelet statistics, an important question arises: what is the best
wavelet to have? What probes the spatial resolutions of interest?

e Let’s use the inverse Fourier transform of the binning function as our wavelet:
M) = | 1) W 1w
R3
e In this work we use g =1 and q = 2.



Wavelet Moments

e In this work we use g=1and q = 2.

e To decorrelate the two moments, we normalise as:
M, (i)

M (1)

M, (i) =



Wavelet Scattering Transforms

 Wavelet transforms are a mathematical tool that allows for localised
representation of data by decomposing it into coefficients that describe different
scales and positions within the data.

« Wavelet Scattering Transforms are constructed by performing a series of wavelet
transforms and the application of the modulus operator, resulting in the
generation of a collection of scattering coefficients.

e The coefficients are constructed layer by layer, and we consider only the
coefficients of the first two layers.



Wavelet Scattering Transforms

 The first layer is constructed by convolving the 2D field I(x) with a family of wavelets

|
Y3, and applying a modulus non-linearity:$,(4,) = — J | [* W, | (X)d2X
Hi
e The second layer is constructed by convolving the field again with another family of

wavelets W, and applying another modulus non-linearity, where 4, > 4, :

|
$a102) = [111%y5, |y 0P
2

» To take into account the variability of S, due to the amplitude of the first wavelet

S>(41, 45)
51(41)

convolution, we follow the usual normalisation by the first layer:S,(4;, 4,) =



Wavelet Scattering Transforms i e

« For one application, we use the complex Morlet wavelets: :

. Here, we dilate our wavelet on scales of 2/: W 4(x) =277 -y (27, 'x)

« We then can rotate our wavelet, between 0 and 7, we are probing a different
region In Fourier space:




Wavelet Scattering Transforms

e For this family of wavelets with both angular and scalar dependence, we average

over the angular dependence to retrieve completely isotropic features (RWST
Allys+19).

e This averaging is on the logarithm of the coefficients:

S50 = <10g2<S1(j1» ‘91)) >
0
‘91992



Wavelet Scattering Transforms

e For our second application, we use the same wavelets as the application of
wavelet moments:




Summarising Our LoS information

o To summarise this statistic, we consider applying a continuous wavelet:
2

w(t) = e~ cos(51)

« We dilate this wavelet by a factor of 2z to probe different scales.

« Once we apply the Cosine Wavelets to each coefficient, we look to convert this
information to a single number. To do this, we consider applying the £”-norm:

1
n
Ixll, ={ D Ix
=1

P



Our Statistics

kmax ~ — — —
J 1ICk) - W, (k)[*dk 3D Gaussian + Log10 binning
kmin
" Kimax ~ —> —> —>
[I(k)- W (k) |*dk 2D Gaussian + Log10 binning
¢ kmin
M,_ ()= [I(X)*W(x)|1dX 2D Gaussian + Log10 binning
J R2
S{SO — <10g2 <S1(j1’ 91))> Séso,l — <10g2 (SZ(j19919j29 92)>> |V|Or|et + Dyad|C
0, 01,0,
S,(0) = J\I* W | (X)d*x Sy}, i) = J| 1% W, | *W, |xd’X 2D Gaussian + Log10 binning
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Simulation information

e We use 21cmFast for the simulation:

. 2004~ 'Mpc (128x256x256)

e 128 freq. channels at SKA resolution
e Simulated between z = 8.82 (144.60 MHz) and z=9.33 (137.46 MHz).

« We vary the following parameters:
o 1 .:50000 =% 5000 K

Vir:

« R, _.=15=x5Mpc
e (=30%£5



Fisher set up

 We use 400 simulations for each parameter change and 600 simulations
Fiducial.

« We are fully convergent (<10% err) after our 400 simulations.

o We take the evolution of each at apply the decomposition over scales of D
R jZ = 1,2,3,4 with the Z%-norm
e j,=1,2 with the Z1-and £*-norm

e These provide a good condition number, for the noiseless case, i.e., the condition number
is below 10’



Results

Our statistics will be denoted by qgfzj

s 1S the statistic
[ is the summary used on the evolution
] are the scales that are summarised.

WM
£1.62:1,2

computed atj = 1 and j = 2 scales for both 7 l'and #? norms.

For example, ¢ represents the evolution-compressed wavelet moments,



Results: Noiseless

e \Wavelet Moments provides the most accurate
constraints on astrophysical parameters compared
to other methods

e 2+1 statistics outperform the 3D power spectrum

e \Wavelets-based statistics outperform the power
spectra statistics

Statistics Tvir | Rmax | ¢
(Results are log,)

$ip 7.42 [ 201 | 1.50
3P

124 7.25 | 2.05 | 1.37
& oy 5 713 | 2.04 | 1.28
S s 545 | 093 | -0.22

WM

R 6.25 | 1.00 | 0.43
Bpooy2n s 6.00 | 0.98 | 0.27
A 599 | 1.01 | 0.30
Bpoy s 4 5.81 | 0.58 | —0.07
A 579 | 0.60 | —0.05

Table 5: We show the Cramer-Rao bounds for all of our summary
statistics, in the case where we have no noise. The bound estab-
lishes a lower bound on the variance, 1.e. the smallest uncertainty

achievable for an unbiased estimate on a given parameter.
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Fig. 4: Results from the Fisher analysis of the three different summary statistics of the 21cm signal, when 3 astrophysical parameter
are varied, as we have noiseless data, considering cosmic variance as the only source of variance.

Top: The corner plot of our noiseless Fisher analysis, showing that ¢

WM
2:1234

providing the tightest contours. Bottom: The +68%

credibility intervals of our different astrophysical parameters, for each statistic. The ordering of the statistics is based on their

performance, going from least constraining statistic (top) to most constraining (bottom).
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o
o
Results: 100 hrs SKA nois
3D
e In the high-noise case, WST  provides the tightest | i
. 22, 24:1.2
constraints /A:\\
. . ) E— by
e The dyadic scales of WST, favour the more noise » __
. . Q1 [ . - WST,,
inflicted scales N G142 1,2
. . « O
e The 2+1 statistics, overall, produce the tightest
constraints compared to the spherically averaged ,x">°' A
power spectru m
Statistics TVir R‘“ax { ,\"),Q ‘
(Results are log,,) S
o 9.22 | 3.60 | 2.97 Y
A 8.90 | 3.52 | 2.80 (= ) A
) ST - ; /_\
o1 g2.1 2 8.68 | 3.24 | 2.56 / ' ' ' ' ' ' ' N
— ® ® © Q o QO O O O O O
g 316 | 2.84 | 2.27 PSRN SN RS OO
q'W.M.m : Tvir [1€5] Riax ¢
& £ £2:12 8.09 . 276 | 2.20 " i :
B 9.31 | 3.88 | 3.21 ‘
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(3“_:;7;" ' 7.31 ’ 1.73 1.29 Fig. 5: The same as Fig. 4. but for 100 hours of SKA noise, where the noise is the dominant source of variance. We see now that
(1,234 WST,, is the worse performing statistic, and WST,,, with its with its evolution along the lightcone summarised by the ¢'-norm and
(32’5; T”l , 728 1.71 1.27 £%-norm on scales j, = 1,2, which utilises wavelets derived from the power spectra binning provides the tightest contours.
Table 6: We show the Cramer-Rao bounds for all of our summary 21

statistics, 1n the case where we have 100 hours of SKA noise.



Results: 1000 hrs SKA noise

e |n the lower noise case, all 2+1 statistics outperform
the spherically-averaged power spectrum

e WST, , continues to produce produce the tightest

constraints

e The Wavelet-based statistics using wavelets derived
from PS binning produce the tightest constraints.

Statistics Tvir | Ryax | £
(Results are log ) '
$3p 8.82 [ 277 | 2.24
S 785 | 2.74 | 1.94
o, 782 | 2.53 | 1.82
b 7.56 | 2.36 | 1.70
& .1 7.50 | 223 | 1.62
oy 224 8.10 | 2.80 | 2.00
R 8.11 | 279 | 2.00
ooy 24 6.74 | 124 | 0.65
P 6.69 | 1.24 | 0.63

Table 7: We show the Cramer-Rao bounds for all of our summary
statistics, 1n the case where we have 1000 hours of SKA noise.
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Conclusion

e The 2+1 statistics provide tighter constraints compared to the 3D spherically averaged
power spectrum

e For the noiseless case, Wavelet Moments provides the tightest constraints

. In the two noise cases, high and low noise, WST, provides the tightest constraint.



