
Application of Wavelet Based 
Statistics for Enhanced 21cm 
Parameter Constraints
I. Hothi, E. Allys, B. Semelin, F. Boulanger



2

The Spherically-Averaged  3D Power spectrum

https://github.com/EoRImaging/eor_limits/tree/main



The need for 3D?
2+1 Statistics 
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2+1 Statistics
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Consider a 2+1 statistic with the tools we 
have

5



Consider a 2+1 statistic with the tools we 
have
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•
The power spectrum can be written as: 


• For our binning of the 2D power spectrum, they are concentric circles:

∫
kmax

kmin

| Ĩ( ⃗k ) ⋅ Wk( ⃗k ) |2 d ⃗k

Power Spectrum



• Definition of a wavelet moment: 


• 


• When using wavelet statistics, an important question arises: what is the best 
wavelet to have? What probes the spatial resolutions of interest?

• Let’s use the inverse Fourier transform of the binning function as our wavelet:




• In this work we use q = 1 and q = 2. 

∫ℝ3

| I( ⃗x ) * ψj( ⃗x ) |q d ⃗x

q > 0

Mq(i) = ∫ℝ3

| I( ⃗x ) * W̃i( ⃗x ) |q d ⃗x

Wavelet Moments



• In this work we use q = 1 and q = 2. 

• To decorrelate the two moments, we normalise as:


M̄1(i) =
M1(i)
M2(i)

Wavelet Moments



Wavelet Scattering Transforms
• Wavelet transforms are a mathematical tool that allows for localised 

representation of data by decomposing it into coefficients that describe different 
scales and positions within the data. 

• Wavelet Scattering Transforms are constructed by performing a series of wavelet 

transforms and the application of the modulus operator, resulting in the 
generation of a collection of scattering coefficients. 

• The coefficients are constructed layer by layer, and we consider only the 

coefficients of the first two layers.



Wavelet Scattering Transforms
• The first layer is constructed by convolving the 2D field  with a family of wavelets 

 and applying a modulus non-linearity: 


• The second layer is constructed by convolving the field again with another family of 
wavelets  and applying another modulus non-linearity, where  :




•  To take into account the variability of  due to the amplitude of the first wavelet 

convolution, we follow the usual normalisation by the first layer:

I(x)

ψλ1
S1(λ1) =

1
μ1 ∫ | I * ψλ1

| (x)d2x

ψλ2
λ1 > λ2

S2(λ1, λ2) =
1
μ2 ∫ | | I * ψλ1

| * ψλ2
(x)d2x

S2

S̄2(λ1, λ2) =
S2(λ1, λ2)

S1(λ1)



Wavelet Scattering Transforms
• For one application, we use the complex Morlet wavelets: 


•  Here, we dilate our wavelet on scales of :


• We then can rotate our wavelet, between 0 and , we are probing a different 
region in Fourier space:

2j

π

ψj,θ(x) = 2−2j ⋅ ψ (2−jr−1
θ x)



Wavelet Scattering Transforms
• For this family of wavelets with both angular and scalar dependence, we average 

over the angular dependence to retrieve completely isotropic features (RWST 
Allys+19).

• This averaging is on the logarithm of the coefficients:

                            Siso
1 = ⟨log2(S1( j1, θ1))⟩

θ1

S̄iso
2 = ⟨log2(S̄2( j1, θ1, j2, θ2))⟩

θ1,θ2



Wavelet Scattering Transforms
• For our second application, we use the same wavelets as the application of 

wavelet moments:



Summarising Our LoS information

• To summarise this statistic, we consider applying a continuous wavelet: 




• We dilate this wavelet by a factor of , to probe different scales.


• Once we apply the Cosine Wavelets to each coefficient, we look to convert this 
information to a single number. To do this, we consider applying the -norm: 

ψ(t) = e− t2
2 cos(5t)

2jz

ℓp

∥x∥p = (
n

∑
i=1

|xi |
p )

1
p
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Our Statistics
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∫
kmax

kmin

| Ĩ( ⃗k ) ⋅ Wk( ⃗k ) |2 d ⃗k

Wavelet + Scaling

3D Spherically averaged PS 3D Gaussian + Log10 binning

2+1 PS 2D Gaussian + Log10 binning

Wavelet Moments 2D Gaussian + Log10 binning

WST_m Morlet + Dyadic

WST_w 2D Gaussian + Log10 binning

∫
kmax

kmin

| Ĩ( ⃗k ) ⋅ Wk( ⃗k ) |2 d ⃗k

Mq=1+2(i) = ∫ℝ2

| I( ⃗x ) * W̃i( ⃗x ) |q d ⃗x

Siso
1 = ⟨log2(S1( j1, θ1))⟩

θ1

Siso,1
2 = ⟨log2(S2( j1, θ1, j2, θ2))⟩

θ1,θ2

S1(i) = ∫ | I * W̃i | (x)d2x S2(i1, i2) = ∫ | | I * W̃i1 | * W̃i2 |xd2x



Simulation information

• We use 21cmFast for the simulation: 


• 200  (128x256x256) 


• 128 freq. channels at SKA resolution 

• Simulated between z = 8.82 (144.60 MHz) and z = 9.33 (137.46 MHz).

• We vary the following parameters:

• : 50000  5000 K


• = 15  5 Mpc


• = 30  5

h−1Mpc

Tvir ±
Rmax ±
ζ ±
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Fisher set up 

• We use 400 simulations for each parameter change and 600 simulations 
Fiducial. 

• We are fully convergent (<10% err) after our 400 simulations.


• We take the evolution of each at apply the decomposition over scales of :

•  = 1,2,3,4 with the -norm


•  = 1,2 with the - and -norm


• These provide a good condition number, for the noiseless case, i.e., the condition number 
is below 

2jz

jz ℓ2

jz ℓ1 ℓ2

107
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Results
Our statistics will be denoted by   

 is the statistic  
 is the summary used on the evolution  
 are the scales that are summarised.  

For example,  represents the evolution-compressed wavelet moments, 

computed at  and  scales for both  and  norms.

ϕ̄s
l:j

s
l
j

ϕ̄WM
ℓ1,ℓ2:1,2

j = 1 j = 2 ℓ1 ℓ2
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Results: Noiseless
• Wavelet Moments provides the most accurate 

constraints on astrophysical parameters compared 
to other methods 


• 2+1 statistics outperform the 3D power spectrum


• Wavelets-based statistics outperform the power 
spectra statistics
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Results: 100 hrs SKA noise
• In the high-noise case,  provides the tightest 

constraints


• The dyadic scales of  favour the more noise 
inflicted scales


• The 2+1 statistics, overall, produce the tightest 
constraints compared to the spherically averaged 
power spectrum

WSTw

WSTm
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Results: 1000 hrs SKA noise
• In the lower noise case, all 2+1 statistics outperform 

the spherically-averaged power spectrum


•  continues to produce produce the tightest 
constraints


• The Wavelet-based statistics using wavelets derived 
from PS binning produce the tightest constraints. 

WSTw
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Conclusion
• The 2+1 statistics provide tighter constraints compared to the 3D spherically averaged 

power spectrum

• For the noiseless case, Wavelet Moments provides the tightest constraints 


• In the two noise cases, high and low noise,  provides the tightest constraint.WSTw
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