End-to-End Simulation and EoR signal separation for SKA1-LOW Observation

朱正浩 (Zhenghao Zhu)

Dark Age & Epoch of Reionization

•HI hyperfine structure $1_1S_{1/2}$ n_1 $\lambda=21cm$ $1_0S_{1/2}$ n_0 \uparrow

 $n_1/n_0 = 3 \exp(-hv_{21cm}/kT_s)$

↓

Use CMB backlight to probe 21cm transition

EoR Cosmology & Astrophysics

Why End-to-End Simulation

SKA-LOW prototype antenna (left half) and art image (right half) Credit: SKAO

EoR signal is drowned in the foreground that is 10⁵ times stronger

Need realistic simulations to check the result

Skymap: Galactic Synchrotron emission

- Reference: Reprocessed Halsam 408MHz map¹
- Spectral Index: All-sky synchrotron spectral index from Giardino et al. (2002)
- Add small scale fluctuation (Nside=8192, pixel size ~0.5 arcmin) following Remazeilles et al. (2015)
- Center of RA,DEC=0,-27

Brightness temperature of the simulated synchrotron emission from 110 MHz – 120 MHz

Skymap: polarization of the Synchrotron emission

Polarization map from WMAP 9-year observation¹ Using K band (23GHz) polarization fraction for q and u component in all simulated frequencies

Fraction of stokes q(left) and u(right) component

Skymap: free-free emission & point source

Free-free

- Hα survey data¹, corrected for dust absorption,
- employing the tight relation between the H α and free-free emissions due to their common origins^2

Extragalactic point source:

- Using simulation results from Wilman et al. 2008
 - (1) Star forming and starburst galaxies
 - (2) radio-quiet AGNs
 - (3) Fanaroff–Riley type I and type II AGNs

- 1. Finkbeiner 2003
- 2. Dickinson et al. 2003, and references therein

Skymap: radio halo & EoR signal

Radio halo

- Using the simulation result from Li et al. 2019
- Get merge history from PS theory
- Solving FP equation & calculate radiation

EoR signal

 Using the data from Evolution Of 21cm Structure project¹

Thermal noise

Thermal noise fluctuation on the antenna is added Using the noise level given in SKA memo153¹

Thermal noise level of SKA1-LOW for 100kHz bandwidth

Credit: SKA memo 153

Ionosphere, Phase & Gain Error

Ionosphere¹

- simple model: two layers
 - 150 Km/h at 300km altitude
 - 75 km/h at 310km altitude
- Using ARatmospy²

Gain Error³: 0.0198 dB Phase Error³: 1.2 deg

The phase screen used to model the ionosphere

- 1. <u>https://fdulwich.github.io/oskarpy-doc/example_ionosphere.html</u>
- 2. https://github.com/shrieks/ARatmospy
- 3. https://gitlab.com/ska-telescope/sim/ska-sim-low

OSKAR, SKA1-Low configuration

Using SKA1-Low array configure and antenna response¹

Illustration of SKA1-Low Antenna, Station, and Array concepts. Credit: Braun et al. 2019

1. <u>https://gitlab.com/ska-telescope/sim/ska-sim-low/-/tree/master/rfi/data/telescope_files</u>

Nominal Frequency	110 MHz	300 MHz
Range [GHz]	0.05-0.35	0.05-0.35
Telescope	Low	Low
FoV [arcmin]	327	120
Max. Resolution [arcsec]	11	4
Max. Bandwdith [MHz]	300	300
Cont. rms, 1 hr [µJy/beam] ^a	26	14
Line rms, 1 hr [µJy/beam] ^b	1850	800
Resolution Range for Cont. and Line rms [arcsec] ^c	12-600	6–300
Channel width (uniform resolution across max. bandwidth) [kHz]	5.4	5.4
Spectral zoom windows x narrowest bandwidth [MHz]	4 x 3.9	4 x 3.9
Finest zoom channel width [Hz]	226	226

Anticipated Performance of SKA1-LOW https://arxiv.org/abs/1912.12699

OSKAR, SKA1-Low configuration

Using SKA1-Low array configure and antenna response¹

Antenna/Receptor Antenna Beam "Station" Station Beam "Array" Correlation and Tied-array Beams

Illustration of SKA1-Low Antenna, Station, and Array concepts. Credit: Braun et al. 2019

1. <u>https://gitlab.com/ska-telescope/sim/ska-sim-low/-/tree/master/rfi/data/telescope_files</u>

Nominal Frequency	110 MHz	300 MHz	
Range [GHz]	0.05-0.35	0.05-0.35	
simulation criteria			
Range (MHz)	60-7 120.22	60-70.22,110- 120.22,160-170.22	
FoV		300'	
Pixel size		5"	
Resolution	2	20 kHz	
Integration time		6 hrs	
Current product size	~	~20 TB	
Total Resource Consumption	250000 GPU card*hours		
Finest zoom channel width [Hz]	226	226	

Anticipated Performance of SKA1-LOW https://arxiv.org/abs/1912.12699

Simulated dirty map

Using wsclean¹ w-gridder Weight: Briggs 0

Simulated Galactic (left) and extragalactic (middle) foreground and EoR signal (right) from 110-120MHz

Foreground spectrum is not smooth enough comparing to the EoR signal

Component separation method that relies on the spectral smoothness need to be treated carefully

EoR window

Instrumental/observation al effects will contaminate the EoR windows

Separation methods will be needed beside using the EoR window

2D Power spectrum for sky maps(upper) and dirty maps(lower)

If there is no observational effect

EoR signal can be seperated

EoR signal (upper) & foreground (lower) without instrument effect

IDEA: Machine learning for de-convolution

- Training set:
 - Image CUBE: 2048*2048*901, Central 1024*1024 are used
 - Three weighting (BRIGGS, NATURAL, UNIFORM)

- Division and normalization:
 - Normalized for each image cube (mean=0, std=1)
 - Cut the figure into the size of 128*128

U-Net network (for now)

From left to right: 6 convolutions, 3 max-poolings, 6 transpose convolutions, 3 up-samplings, 1 transpose convolution

Training Result

1.18e+03 1.21e+03 1.24e+03 1.27e+03 1.3e+03 1.33e+03 1.36e+03 1.4e+03 1.43e+03

Upper left: skymap, left: dirty map, right: "cleaned" map from U-net network

Upper right: 2D PS of EoR signal from polynomial fitting Lower right: True value of the input EoR PS.

SDC3: Result

Apply the U-Net network to SDC3 data, and separate the EoR signal use polynomial fitting

left: the EoR signal we got.
right: Comparison of the PS with true value.

After SDC3: Future Plan

left: dirty map; middle: sky model; right: U-Net output

Updating the training set — — E2E STAGE I (7200*7200) * (512*3) *3*3 Updating the network: taking PSF into account Better pre-processing...

Thank you for listening! Comments & Questions are welcome!