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the “formative childhood” of the
Universe, yet the majority of the
observable volume

e When and how did the
first galaxies form?

e How did they impact each
other and their
surroundings?

e What are the dominant
feedback mechanisms?

e Can we learn about Dark
Matter properties?

e How does the Hubble
parameter evolve?

\' .\ * What are the properties

of the first stars and black
i\ holes?
\ .‘_‘

/

% _ adapted from Cynthia Chiang




S S Cosmic 21-cm

The SKA will eventually
map out the poorly
constrained Cosmic Dawn
and Epoch of Reionization:
more than 1/2 of our
observable Universe



SIS Cosmic 21-cm

The SKA will eventually
map out the poorly
constrained Cosmic Dawn
and Epoch of Reionization:
more than 1/2 of our
observable Universe
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The SKA will detect the power spectrum of
these fluctuations with very high signal to noise

1D power spectrum from “fiducial model”

peak” structure of the
cosmic signal
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Redshift, z

Kaur, Gillet, AM (2020)



The SKA will detect the power spectrum of
these fluctuations with very high signal to noise

1D power spectrum from “fiducial model” S/N from a 1000h SKA-low observation

8 10 12 14
Redshift, z

Kaur, Gillet, AM (2020)



What can we learn from these
patterns?



Timing of reionization and the properties of

the (unseen) galaxies that drive it

e Galaxy clustering + stellar properties 2 evolution of

large-scale EoR/CD structures
o IR

Abundant, faint galaxies

3

I

§ ;

McQuinn+ 2007

vs Rare, bright galaxies



Patterns in the Epoch of Heating

High-energy processes in the first galaxies are also encoded in the cosmic 21-cm signal

‘hard’ SED ~ HMXBs ‘soft” SED ~ hot ISM

50

-150

-200

differences are easily detectable with HERA and the SKA
Pacucci, AM + 2014



More exotic sources of early IGM heating?

e Cosmic Rays? (e.g. Leite+2017; Jana and Nath 2018; Gessey-
Jones+2023)

e Dark matter annihilations? (e.g. Evoli+2014; Lopez-
Honorez+2016)

e Dark matter decay? (e.g. Facchinetti+ 2023)

All have different spatial signature
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Star formation is suppressed in regions with
large relative velocities

Ve = 00rms Ve = 10rms Ve = 20rms Ve = 30rms

-

y [ckpc/h]

number density [cm~3]

y [ckpc/h]

number density [cm~3]

y [ckpc/h]

number density [cm ™3]

INCreasing Voo ——————- Schauer+2021



Standard ruler
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That sounds great, but where are we now?
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Measurements are improving, but currently
only upper limits on the PS

Power Spectrum 95% Confidence Upper Limits [0.03 < k < 0.4 Mpc ']
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Barry+ 2022



Currently only upper limits on the PS

Power Spectrum 95% Confidence Upper Limits [0.03 < k < 0.4 Mpc ']
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Application to HERA (HERA collaboration 2022ab).
For similar studies on LOFAR and MWA data see (Ghara+2020; Mondal+2020; Greig+2020,

Greig+2021)



What kind of models are the easiest to rule
out (i.e. have the largest power)?

H T\ /1+2z 0.15 \/? / Q,h?
OTp(v) = 27Xu1(1 + 0m) (dv Jdr - H) (1 - T_;) ( 10 QMhz) (0_823) mK




What kind of models are the easiest to rule
out (i.e. have the largest power)?

™ H T\ (142 015 \/? / Qsh?
5Tb(")~2@1+5m) (dv,/dr+ H) (1_ﬁ)( 10 QMhz) (0-023) i

~0—1




What kind of models are the easiest to rule
out (i.e. have the largest power)?

| ‘ H T\ (142 015 \'/* [ Qh?
OTo(v) ~ 21Xl + w7 H) (1 - T_;) ( 10 QMhz) (0-023) -

~01—1



What kind of models are the easiest to rule
out (i.e. have the largest power)?

H

W1tz 005\ raph?y
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What kind of models are the easiest to rule
out (i.e. have the largest power)?

H T\ /1+z 0.15 \ /2 / Q,h2
5Tb(l/) ~ 27XHI(1 +5nl) (dVr/dr + H ) (1 - T_;) ( 10 QMh2> (002?,) mK

Models that are ruled out must have:

coLp I6M: Ty < T,




What kind of models are the easiest to rule
out (i.e. have the largest power)?

. . H T\ /14+2 0.15 \ 2 / Qyh?
0Tp(v) = 27Xgr(1 + d, 1- 2 , , — K
o) (1 + On) (dv,./dr T H) < TS) ( 10 sthz) (0.023) W
Models that are ruled out must have:

coLp I6M: Ty < T,
+

Spatial fluctuations in either:
e jonization fraction (patchy EoR)
e matter density
e temperature (requires extremely soft SEDs)

see also e.g. Ewall-Wice+2013; Ghara+2020; Greig+2020;
Mondal+2020; Reis+2020; Greig+2021



Density

z=7.9

Examples

21cm

21cm 21cm power
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Current constraints on EoR history

BUT we know the EoR is HERA band 2
underway at z~8! ;
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Current constraints on EoR history

BUT we know the EoR is HERA band 2
underway at z~8! '
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Constraints on IGM properties
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Ill

If heating is provided by “normal” galaxies, they would

need to be more luminous in X-rays than observed locally
Local galaxies

v

0.9 T T
Local relation for HMXBs
(Mineo et al. 2012)
0.8 1 Prediction for low-metallicity .
— " HMXBs (Fragos et al. 2013) The HERA collaboration
——— 21cmMC Prior H
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HERA is the first observation to constrain the X-ray
luminosities of Cosmic Dawn galaxies (e.g., Fragos+13),
disfavoring the values seen in local, metal-enriched
galaxies

The HERA collaboration (2023;
led by J. Dillon)



s this surprising?



The 21-cm signal probes a new regime for
HMXBs: low mass galaxies + low metalicity

—— F+ 13 Lx/SFR
o —— B+ 16 Lx/SFR
En
z 'zo 10*! 1 The first galaxi
T
(V] LS
ey
. O
~
 OC 1040 *
I m M+12(z=0)
LS~ —
O & L+19(z=0)
) A F+19(z 1.3-2.7) 3
B v F+20(z= 0.1- 025)
e e F+20(z=0.5-0.9)
e D+15(z=0) \
1071 10°

Kaur, Qin, AM+ (2022)



The 21-cm signal probes a new regime for
HMXBs: low mass galaxies + low metalicity
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Milestones
aka “The path to the 21-cm revolution”




Where we are now
Upper limits on the 21-cm power spectrum
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e understand systematics! can we parametrize / sample our
uncertainties?



Where we are now

Upper limits on the 21-cm power spectrum

e understand systematics! can we parametrize / sample our
uncertainties?

e do we have all of the physics we need, especially regarding
heating sources?



Including a contribution from even earlier,
molecularly-cooled galaxies (MCGs)?

0.5
— Without MCGs

10g10 f*77 > —25
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Lazare+(2023)
see also Qin, AM+2021;
HERA 2022a

Constraints from HERA can weaken, though results depend strongly on priors



Where we are now

Upper limits on the 21-cm power spectrum

e understand systematics! can we parametrize / sample our
uncertainties?

e do we have all of the physics we need, especially regarding
heating sources?

e posteriors will be prior-dominated UNLESS we have “realistic”
galaxy models that can be constrained by other observations



Contribution of different data
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Where we are now

Upper limits on the 21-cm power spectrum

e understand systematics! can we parametrize / sample our
uncertainties?

e do we have all of the physics we need, especially regarding
heating sources?

e posteriors will be prior-dominated UNLESS we have “realistic”
galaxy models that can be constrained by other observations

* emulators are useful! error is currently sub-dominant

(e.g. Kern+2017; Schmit & Pritchard 2017; Shimabukuro & Semelin 2017; Jennings+2019;
Ghara+2020; Mondal+2022; Bye+2022a; Lazare+2023; Breitman, AM+2023)



Where we will be soon
Low S/N detection of the 21-cm PS
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Where we will be soon
Low S/N detection of the 21-cm PS

e understand systematics! can we parametrize / sample our
uncertainties?

e how can we convince ourselves and everyone else that the
detection is REAL —> cross-correlation with signal of known
cosmic origin
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The importance of cross-correlations

* |tis an important sanity check to verify claims of

detection/analysis pipeline
* improves S/N for preliminary detections (systematics

and noise are uncorrelated in cross)

* with images, it lets us study individual HIl (or heated)
regions, comparing them to their host galaxy properties
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The CHIME collaboration 2022



Signals to cross with 21cm during EoR/CD

1. Cosmic Backgrounds (difficult to get good S/N because signal integrates
over redshift)

(i) CMB (e.g. kSZ with SPT/ACT/SO; e.g. Ma+2018; LaPlante+2022)
(ii) NIR (e.g. CIBERII Mao 2014)
(iif) XRB (Athena) e.g. Ma+2018
2. Resolved Galaxies (need wide and deep, and redshifts to better than
percent precision-> grism or multi-object spectroscopy)
(i) ROMAN grism (e.g. Vrbanec+2020; LaPlante+2023)

(i) SUBARU narrow-band (e.g. Sobacchi+ 2016; Vrbanec+2020; Hutter+2017; Kubota+ 2020;
Heneka & Mesinger 2020);

(iii) SUBARU spectroscopy with PFS
(iv) ELT spectroscopy (Gagnon Hartman+ in prep)

3. Intensity mapping (best footprint overlap; signal is generally faint at z>6)
(i) Lya - SPHEREXx (e.g. Heneka & Cooray 2021) CDIM (Cooray+2016)
(ii) Olll - SPHEREXx (Kana+ 2019; Moriwaki+2019; Schengqi+2021)
(iii) Cll - CONCERTO (Lagache+2017), TIME-Pilot (Crites+2014), CCAT-prime (Parshley+2018)



High S/N map of ~50% of
the observable Universe
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Probability

Where we should be >2030-2040
High S/N map with the SKA

e optimal compression of non-Gaussian signal (e.g. bispectrum,
Minkowski functionals, wavelets, data-driven compression...)

2/ 9
o / J9DPS
102 10! 100 101 102

1DPS
2DPS
Wavelets
RNN
IMNN 90k

2DPS + IMNN 90k

0 5 o 5 20
Prelogovi¢ & AM 2024 log(det F)

25

Compare constraining
power of different
summaries across
prior volume

(see also, e.g. Watkinson+2017; Majumdan+2020; Chen+2019; Giri&Mellema2021; Kamran+2023...)



Where we should be >2030-2040
High S/N map with the SKA

e optimal compression of non-Gaussian signal (e.qg. bispectrum,
Minkowski functionals, wavelets, data-driven compression...)

e do we actually know the likelihood analytically? —>
Simulation Based Inference (SBI)



Simulation Based Inference (SBI)

Inference using SBI: if including all main sources of stochasticity,
each forward model is a sample from the joint distribution of
model & data. The likelihood can just be fit with NDEs.

e(5™)
k_,, | No need for an analytic

X X likelihood!!!

difficult to write down for non-
- Gaussian and correlated
observations

B e
e NC

Credit: Tom Charnock




Simulation Based Inference (SBI)

Inference using SBI: if including all main sources of stochasticity,
each forward model is a sample from the joint distribution of
model & data. The likelihood can just be fit with NDEs.

difficult to write down for non-
" Gaussian and correlated
t' observations

Prelogovi¢ & AM (2023)
(see also Zhao+2022, Saxena+2023)

X 10k samples



Where we should be >2030-2040
High S/N map with the SKA

e optimal compression of non-Gaussian signal (e.qg. bispectrum,
Minkowski functionals, wavelets, data-driven compression...)

e do we actually know the likelihood analytically? —>
Simulation Based Inference (SBI)

e emulating maps (do we trust emulators?)

Simulation

DDPM 40

StyleGAN2

Zhao+ (2023)
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Where we should be >2030-2040
High S/N map with the SKA

e optimal compression of non-Gaussian signal (e.qg. bispectrum,
Minkowski functionals, wavelets, data-driven compression...)

e do we actually know the likelihood analytically? —>
Simulation Based Inference (SBI)

e emulating maps (do we trust emulators?)

e how well do we trust our simulators (analytic, semi-numeric,

moment-based RT, ray tracing, hydro...)??
AM+ (2011)




Conclusions

The cosmic 21cm signal will allow us to learn the average UV and Xray
properties of the unseen first galaxies.

SKA will also open a new window on physical cosmology, e.g.

e exotic heating processes, e.g. DM annihilations and decay
e standard ruler at z=10-15 from velocity-induced feedback on galaxies

Upper limits on the 21-cm power spectrum by SKA precursor, HERA, imply
some heating of the IGM by z>10.

If heating is provided by high mass X-ray binary stars, they are likely more
luminous then local ones, likely due to their low-metallicities.

Future detections will need cross-correlations with signals of known origin
in order to be believed.

High S/N maps of half of our observable Universe should be enabled by the
SKA over the next couple of decades, ushering in a Big Data revolution



