

The sensitivity of the 21cm signal – LAE cross correlations to the ionisation topology

Anne Hutter Cosmic Dawn Center, University of Copenhagen

Collaborators: Caroline Heneka, Astraeus Team (Pratika Dayal, Maxime Trebitsch, Stefan Gottlöber, Gustavo Yepes), Andrei Mesinger

Was reionisation driven by the numerous faint or the few bright galaxies?

ANG		Few bright galaxies drive reionisation	
RECOMBI	TIME	Numerous faint galaxies drive reionisation	A Gyr

Was reionisation driven by the numerous faint or the few bright galaxies?

Astraeus framework: simulating the evolution of galaxies and the IGM

What determines the ionising nature of the first galaxies?

Is the visibility of Lyman- α emitters sensitive to ionisation topology?

Hutter+ 2023a

$\log_{10}(L_{\alpha}/\text{erg s}^{-1}) = 42$ t = 647 Myr

f_{esc} decreases with halo mass MHDEC

Astraeus simulations

f_{esc} increases with halo mass MHINC

Lyman- α emitter distribution hardly traces the ionisation topology!

As LAEs (L_{α} > 10⁴² erg/s) are the most massive galaxies, their spatial distribution depends mostly on the global ionisation state of the IGM.

Where are Lyman-α emitters located in the IGM?

LAEs are located in the most ionised overdense regions

no 21cm signal

21cm – LAE cross correlation function: characteristics

small-scale amplitude

21cm – LAE cross correlation function: similar but different

normalisation, box size, physics (ionisation, LAE identification)?

21cm – LAE cross correlation functions: small-scale amplitude

During reionisation:

$$\xi_{21,LAE}(r pprox 0) pprox - \langle \chi_{HI}
angle \ ig | 1 + \delta ig |_{HI}$$

21cm <u>Lyα luminosity</u> increasing **MHINO** 21cm

Hutter, Heneka+ 2023

21cm – LAE cross correlation function: small-scale amplitude traces ionisation topology!

Hutter, Heneka+ 2023

21cm – LAE cross correlations are sensitive to ionisation topology!

21cm – LAE cross correlations are sensitive to ionisation topology!

21cm – LAE cross correlations are sensitive to ionisation topology!

Hutter, Heneka+ 2023b

Cumulative distribution function of size of ionised regions around LAEs

Analytical 21cm – LAE cross correlation small-scale amplitude also valid when spin temperature fluctuations dominate!

EOS simulations with 21cmFAST (1.6 Gpc)³ with 1024³ cells Mesinger+ 2016

LargeHII scenario: only halos with $T_{vir} > 2 \times 10^5 K$ are sources

Analytical limit: $\xi_{21,LAE}(r \approx 0) \approx -\langle \chi_{HI} \rangle \left| \left| 1 - \frac{T_{CMB}}{T_s} \right| (1 + \delta) \right|$

Hutter, Heneka+ 2023

Too small boxes underestimate 21cm – LAE cross correlation amplitudes due to missing large-scale power

Simulation volumes of larger than \sim (250 cMpc)³ needed.

Conclusions

LAEs ($L_{\alpha} > 10^{42}$ erg/s) are the most massive galaxies.

- They are located in the most ionised overdense regions.
- Spatial distribution is mostly sensitive to the the global ionisation state of the IGM.
 Hutter+ 2023a, arXiv:2209.14592

21cm-LAE cross correlation function amplitude is sensitive to:

- ionisation history
- ionisation topology
- IGM heating

$$\begin{split} \xi_{21,LAE}(r) &\approx -\langle \chi_{HI} \rangle \ \langle 1 + \delta \rangle_{HI} \ \left[1 - \langle \chi_{HI} \rangle CDF(r) \right] \\ \xi_{21,LAE}(r &\approx 0) &\approx -\langle \chi_{HI} \rangle \ \left(\left[1 - \frac{T_{CMB}}{T_s} \right] (1 + \delta) \right]_{HI} \right) \end{split}$$

Hutter, Heneka+ 2023, arXiv:2306.03156