Exploring Beyond Standard Cosmological Model during the Epoch of Reionization

Sambit Giri

NORDITA fellow

18-22 July 2023

Content

- Implications of non-standard dark matter models on reionization
- Constraints on the nature of dark matter from JWST
- Forecast study for future measurements from SKA
- Constraints on Inflation models

Non-cold dark matter models

 $f_{
m wdm} = 1$ $M_{
m wdm} = 0.5 \ {
m keV}$

 -10^{3}

 10^{2}

 $ho_{
m cdm}/ar{
ho}_{
m cdm}$

 10^{0}

 10^{-1}

Mixture of cold and warm dark matter particles

 $ho_{
m cdm}/ar{
ho}_{
m cdm}$

Matter power spectrum

Dark matter particle mass decides the suppression scale

Halo Mass Function

Differences are more distinct at high redshift

Testing WDM models with JWST

Dayal & Giri (2024)

Stellar Mass Function at Redshift 6

$$M_{\star} = \epsilon_{\star}(z) \left(\frac{\Omega_{\rm b}}{\Omega_{\rm m}}\right) M_{\rm h}$$

CDM 3 keV WDM -1.5 keV WDM

 $Log(M_{\bullet}/M_{\odot})$

1.5 keV WDM can be ruled out

$$M_{\star} = \epsilon_{\star}(z) \left(\frac{\Omega_{\rm b}}{\Omega_{\rm m}}\right) M_{\rm h}$$

CDM 3 keV WDM -1.5 keV WDM

 $Log(M_{\bullet}/M_{\odot})$

Log (N/mag/Mpc³)

Global 21-cm signal

Giri & Schneider (2022)

One code to run them all

Timothee Schaeffer's Poster

BEoRN

HMreio: Analytical modelling of Global 21-cm signal

0 $\begin{bmatrix} y \\ z \end{bmatrix}^{-50}$ -50 default cutoff boost $< dT_{\rm b} >$ -150 $\widetilde{dT}_{\rm b}$ 15.0 7.5 10.0 12.5 17.520.0 Ζ

$$\widetilde{\delta T_{\rm b}} = T_0(z) \langle x_{\rm HI} \rangle \langle 1 + \delta_{\rm b} \rangle \\ \frac{x_c + x_\alpha}{1 + x_c + x_\alpha} \left[1 - \frac{T_\gamma(z)}{\langle T_{\rm k} \rangle} \right]$$

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = f_* f_{\mathrm{esc}} N_{\mathrm{ion}} \bar{n}_{\mathrm{b}}^0 \frac{\mathrm{d}f_{\mathrm{coll}}}{\mathrm{d}t} (1 - x_{\mathrm{e}}) - \alpha_{\mathrm{A}} C(z) n_{\mathrm{e}} x_i$$

$$\frac{3}{2}\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{k_{\mathrm{B}}T_{k}n_{\mathrm{tot}}}{\mu}\right) = \epsilon_{\mathrm{X}} + \epsilon_{\mathrm{comp}} - \mathcal{C},$$

Schaeffer, Schneider & Giri (soon to be submitted)

HMreio: Correction including correlations

0 $\widetilde{\delta T_{\rm b}} = T_0(z) \langle x_{\rm HI} \rangle \langle 1 + \delta_{\rm b} \rangle \\ \frac{x_c + x_\alpha}{1 + x_c + x_\alpha} \left[1 - \frac{T_\gamma(z)}{\langle T_{\rm k} \rangle} \right]$ [mK] -50 |₽[°] −100 $< dT_{\rm b} >$ $\delta \widetilde{T}_{\rm b}[1+\Xi(z)]$ -150 $--- \quad \widetilde{dT}_{\rm b} \times (1 + \Xi(z))$ $\simeq \widetilde{\delta T_{\rm b}} \left(1 + \sum_{\substack{i,j \in \{r,b,T,\alpha\}\\i \neq j}} \beta_i(z) \beta_j(z) \langle \delta_i \delta_j \rangle \right)$ 20.0 7.5 10.0 12.515.0 17.5 Ζ

Schaeffer, Schneider & Giri (soon to be submitted)

Global 21-cm signal & Power Spectrum

Expected SKA Power Spectra

Forecast study with SKA Power Spectra

Giri & Schneider (2022)

Constraints on warm+cold dark matter (WCDM)

 $f \sim 1 : m_{\text{WDM}} \gtrsim 15 \text{ keV} (\text{FLOOR}, \text{DPL}),$ $\gtrsim 4 \text{ keV} (\text{TRUNCATED})$ $CDM + hot relic : f \leq 1\%$ (FLOOR, DPL, TRUNCATED)

Giri & Schneider (2022)

Constraints on fuzzy+cold dark matter (FCDM)

 $f \sim 1: m_{\text{FDM}} \gtrsim 2 \times 10^{-20} \text{ eV} (\text{FLOOR, DPL}),$ $\gtrsim 2 \times 10^{-21} \text{ eV} (\text{TRUNCATED})$ CDM + hot relic : $f \lesssim 1\%$ (FLOOR, DPL, TRUNCATED)

TRUNCATED

DPL

FLOOR

LOFAR 21cm upper limit at z=9.1

10⁵ Δ²₂₁(k) [mK²] 10² LOFAR2020 0.07 0.1 0.2 0.5 *k* [*h*/Mpc]

$$rac{\delta T}{T_{
m CMB}} = rac{\pi^4}{15} \Big(rac{T}{\omega}\Big)^3 \mathcal{P} rac{\Omega_{
m GW}}{\Omega_\gamma},$$

He, **Giri** et al. (2024) 27

Constraint on primordial GW background

 Yutong He

- Non-cold dark matter models (e.g. WDM & FDM) show greater distinctions in earlier times
- **Cosmic reionization is delayed** due to formation of less number of small mass light sources in non-cold dark matter scenarios
- JWST data is already sensitive to rule out extreme dark matter models
 - M_{wDM}>1.5 keV (current JWST data)
- Reionization epoch observations can **improve upon the constraints on the dark matter models**
 - M_{WDM}>4-15 keV (SKA-Low with 1000 hours)
- We can **constrain primordial gravitational wave background** with the 21-cm signal during reionization

Detecting Beyond Standard Model Cosmology through Epoch of Reionization Observations

Can we constrain the CDM cosmology?

Timothée Schaeffer's talk yesterday!

Halo model for bubble distribution

Schneider, SG & Mirocha (2021)

Halo model for bubble distribution

Feng, Cooray & Keating (2017)

$$\left| \begin{array}{l} P_{XY}^{1\,\mathrm{h}}(k,z) = \frac{\beta_X \beta_Y}{(\bar{\rho}f_{\mathrm{coll}})^2} \int dM \frac{dn}{dM} \tilde{f}_*^2 M^2 |u_X| |u_Y|, \\ P_{XY}^{2\,\mathrm{h}}(k,z) = \frac{\beta_X}{(\bar{\rho}f_{\mathrm{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M |u_X| b_X \\ \times \frac{\beta_Y}{(\bar{\rho}f_{\mathrm{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M |u_Y| b_Y \times P_{\mathrm{lin}}, \\ P_{XY}(k,z) = P_{XY}^{1\,\mathrm{h}}(k,z) + P_{XY}^{2\,\mathrm{h}}(k,z), \end{array} \right|$$

Correcting for the bubble overlap

$$P_{\rm xx}(k) \to (1 - x_{\rm HII}^A)^2 (1 + k^B)^2 P_{\rm xx}(k)$$

$$P_{\mathbf{x}\delta}(k) \rightarrow (1 - x^A_{\mathrm{HII}})(1 + k^B)P_{\mathbf{x}\delta}(k)$$

HMreio: Halo model approach for 21-cm signal distribution

Matter distribution

Seljak (2000) Cooray & Sheth (2002)

...

21-cm signal distribution

Schneider, Giri & Mirocha (2021) Giri & Schneider (2022) Schneider, Schaeffer & Giri (2023)

HMreio: Halo model approach for 21-cm Power spectrum

$$P_{XY}(k,z) = P_{XY}^{1 h}(k,z) + P_{XY}^{2 h}(k,z)$$

Schneider, Giri & Mirocha (2021)

Ingredients for the halo model

Linear power spectrum

Halo mass function

Mass accretion

Halo bias

Stellar to halo mass relation

Flux profiles

 $P_{XY}^{1 \text{ h}}(k, z) = \frac{\beta_X \beta_Y}{(\bar{\rho} f_{\text{coll}})^2} \int dM \frac{dn}{dM} \tilde{f}_*^2 M^2 [u_X] [u_X]$ $P_{XY}^{2 \text{ h}}(k, z) = \frac{\beta_X}{(\bar{\rho} f_{\text{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M [u_X] b_X$ $\times \frac{\beta_Y}{(\bar{\rho}f_{\text{coll}})} \int dM \frac{dn}{dM} \tilde{f}_* M u_Y b_Y$ $P_{XY}(k, z) = P_{XY}^{1 \text{ h}}(k, z) + P_{XY}^{2 \text{ h}}(k, z),$

$$\tilde{f}_{\star}(M) = \frac{1}{M_{\rm ac}} \int f_{\star}(M) \dot{M}_{\rm ac} dt$$

Linear power spectra

z = 0

Halo mass function

$$rac{\mathrm{d}n}{\mathrm{d}\mathrm{ln}M} = -rac{ar
ho}{M}
u f(
u) rac{\mathrm{d}\mathrm{ln}\sigma}{\mathrm{d}\mathrm{ln}M} \; ,$$

$$M = \frac{4\pi}{3}\bar{\rho}(cR)^3$$

$$\begin{split} f(\nu) &= A \sqrt{\frac{2q\nu}{\pi}} (1+\nu^{-p}) e^{-q\nu/2} \\ \sigma^2(R,z) &= \int \frac{\mathrm{d}k^3}{(2\pi)^3} P_{\mathrm{lin}}(k) \mathcal{W}(k|R) \\ \mathcal{W}(k|R) &= \frac{1}{1+(kR)^\beta} \;. \end{split}$$

Mass accretion rate

Halo bias

$$b(M) = 1 + rac{q
u-1}{\delta_c(z)} + rac{2p}{\delta_c(z)[1+(q
u)^p]}.$$

e.g. Cooray & Sheth (2002)

Stellar to halo mass relation

$$f_*(M) = rac{2(\Omega_b/\Omega_m)f_{*,0}}{(M/M_p)^{\gamma_1} + (M/M_p)^{\gamma_2}} \times S(M)$$

$$S(M) = [1 + (M_t/M)^{\gamma_3}]^{\gamma_4},$$

(SG & Schneider 2022)

Flux profiles

Schneider, SG, Mirocha (2021)

21-cm power spectrum during cosmic dawn

$$P_{21} = P_{aa} + P_{hh} + P_{pp} + P_{bb}$$

+ 2(P_{ah} + P_{ap} + P_{ab} + P_{hp} + P_{hb} + P_{pb})
+ \frac{2}{3}(P_{am} + P_{hm} + P_{pm} + P_{bm}) + \frac{1}{5}P_{mm}.

Schneider, SG, Mirocha (2021)

Validity of the approach

Schneider, SG, Mirocha (2021)