

Faculty of Physics

On behalf of the LOFAR Surveys Cosmology Team Notably: C. Hale, S. Nakoneczny, J. Zheng, M. Pashapour-Ahmadabadi

Cosmology with LOFAR Sky Surveys

Images from Shimwell+ 2019

Lukas Böhme

LOFAR LoTSS Data Release 2 (Shimwell+ 2022): • 5600 sq. degrees

- \sim 4 million sources
- ~70-100 μJy/beam rms

- 144 MHz observations
- 6" resolution
- ~8-hour pointings

LOFAR LoTSS Data Release 2 (Shimwell+ 2022): • 5600 sq. degrees 144 MHz observations • \sim 4 million sources

• ~70-100 μJy/beam rms

- 6" resolution
- ~8-hour pointings

Negative binomial distribution

Neg. binom.: $\chi^2_r = 3.74$

Neg. binom.: $\chi^2_r = 3.74$

Poisson: $\chi^2_{r} = 692.23$ Neg. binom.: $\chi^2_{r} = 3.74$

$$P_{\rm NB}(N) = \binom{N+r-1}{N} (1-p)^N p^r \qquad p = \frac{\lambda}{\sigma^2}, \quad r = \frac{p\lambda}{1-p} \qquad \begin{array}{l} \lambda = \mathbb{E}[{\rm Data}]\\ \sigma^2 = \mathbb{V}ar[{\rm Data}] \end{array}$$

 $p \to 1$ $r \to \infty$ Poissonian limit, p < 1 : Clustering

LOFAR	Une-Point statistics	Radio Dipole	Angular Clustering	LOFAK X CIVIB	LOFAR X EBOSS
Böhme+ in prep					Work in progress
Counts-ir	n-Cell		$\theta = \angle$	(Pixel, directic	on of motion)
$\left. \frac{dN}{d\Omega} \right _{\rm obs} =$	$\left. \frac{dN}{d\Omega} \right _{\text{rest}} (1 + d\cos\theta)$				
	(Ellis ar	nd Baldwin, 1984)			
				$v_{\rm CMB} = 369.821$	kms^{-1}
		COBE, NASA Fixsen+ 1994			

LOFAR	One-Point statistics	Radio Dipole	Angular Clustering	LOFAR x CMB	LOFAR x eBOSS
Böhme+ in prep	0				Work in progress
Counts-	in-Cell		heta=igtriangle	(Pixel, directio	on of motion)
$dN \mid dN \mid$			$dN/d\Omega(>S)\propto S$	e^{-x} Slope in source	ce counts
$\left. \frac{d\Omega}{d\Omega} \right _{\rm obs} =$	$= \left. \frac{d\Omega}{d\Omega} \right _{\text{rest}} \left(1 + d\cos\theta \right)$	$\left. \frac{d\Omega}{d\Omega} \right _{\text{rest}} \left(1 + d\cos\theta \right)$	$S \propto u^{\prime}$	lpha Spectral index	x
	(Ellis an	d Baldwin, 1984)		$v_{\rm CMD} = 360.82$	kms^{-1}
$d_{exp} = (2 + x(1 + \alpha))\frac{v_{\rm CMB}}{c} \approx 0.5 \times 10^{-2}$				0CMB - 000.02	
Radio su	rvey dependent				
⇒ 0.5% (effect at max and min		COBE, NASA Fixsen+ 1994		

LOFAR	One-Point statistics	Radio Dipole	Angular Clustering	LOFAR x CMB	LOFAR x eBOSS
Böhme+ in pro	ер				Work in progress
RAC	CS-low $(S_{\min} = 16 \text{ mJy}, 88)$	8 MHz)			
0.06 0.05 0.04 0.03 0.02 0.01 0.00 25 35	Poisson Neg. binom. Data	$\chi^2_{\rm Po} = 4.71$ $\chi^2_{\rm NB} = 1.04$			

	А	ĸ	

ne-Point statistics

Radio Dipole

ngular Clusterin

Böhme+ in prep

Work in progress

LOFAR

ne-Point statistics

Radio Dipole

ngular Clusterir.

Böhme+ in prep

Work in progress

LOFAR

ne-Point statistics

Radio Dipole

Böhme+ in prep

Work in progress

e-Point statistics

Radio Dipole

ngular Clusterin

_OFAR x CMB

LOFAR x eBOSS

Work in progress

Böhme+ in prep

- Same source density
- Fix direction towards CMB dipole
- Cross-match RACS-low with RACS-mid

- Consistent with CMB dipole
- Excess dipole still possible

Hale+ 2024

Excess probability to observe galaxies at a given angular scale compared to if no large-scale structure

$$\omega(\theta) = \frac{DD(\theta) + RR(\theta) - 2DR(\theta)}{RR(\theta)}$$

Normalised pairs of galaxies in the data (randoms or data-to-randoms) at an angular separation θ

Creating survey-specific random catalogues is crucial!

One-Point statistics

Radio Dipole

Angular Clustering

LOFAR x (

LOFAR x eBOSS

Hale+ 2024

P(z) from deep fields S_{mi}

 $S_{\min} > 1.5 \text{ mJy}$

Angular Clustering

Nakoneczny+ 2024

- LoTSS-DR2 and CMB lensing maps (Planck Collaboration + 2020) measure angular power spectrum
- Detection of cross-correlation at S/N of 26.6 σ

Angular Cluster

LOFAR x CMB

Nakoneczny+ 2024

- Constrain **bias evolution models** ⇒ **evolving bias**
- Fix certain parameters, able to constrain σ_8

Radio Dipole

ngular Clusteri

Work in progress

Zheng+ in prep

(Angular location of observed BAO relative to fiducial cosmology.

 $\alpha \neq 1$ means deviation from fiducial cosmology)

- LoTSS-DR2 x eBoss (Ross+ 2020) LRG
- Constrain angular BAO parameter α
- Improve constraints on cosmological parameters

auto = eBoss x eBoss auto + cross = LoTSS-DR2 x eBoss

ngular Clusterin

LOFAR High Resolution (matches Euclid res.)

Combination of **High-resolution** imaging (better classification + host galaxy association \rightarrow more reliable photo-z)

Future with LOFAR

LOFAR High Resolution (matches Euclid res.)

LOFAR Follow up Redshift Survey: WEAVE-LOFAR

Combination of **High-resolution** imaging (better classification + host galaxy association \rightarrow more reliable photo-z) and **spectroscopic redshifts** (for all S > 8 mJy sources) will be crucial in improving **cosmology** studies **with LOFAR** in the future.

Future with LOFAR

LOFAR High Resolution (matches Euclid res.)

LOFAR Follow up Redshift Survey: WEAVE-LOFAR

Combination of **High-resolution** imaging (better classification + host galaxy association \rightarrow more reliable photo-z) and **spectroscopic redshifts** (for all S > 8 mJy sources) will be crucial in improving **cosmology** studies **with LOFAR** in the future.

+ LOFAR 2.0 Upgrade (and associated surveys) + LoLSS (54 MHz wide area survey)

Future with LOFAR

- Radio Surveys with LOFAR are great for **cosmology** studies:
 - Combination of large area observations + deep fields with a wealth of ancillary data

- Radio Surveys with LOFAR are great for **cosmology** studies:
 - Combination of large area observations + deep fields with a wealth of ancillary data
- Pashapour-Ahmadabadi et al. (in prep.) studied the one-point statistics and distribution of radio sources

- Radio Surveys with LOFAR are great for **cosmology** studies:
 - Combination of large area observations + deep fields with a wealth of ancillary data
- Pashapour-Ahmadabadi et al. (in prep.) studied the one-point statistics and distribution of radio sources
- Böhme et al. (in prep.) studied the radio dipole with different radio surveys

- Radio Surveys with LOFAR are great for **cosmology** studies:
 - Combination of large area observations + deep fields with a wealth of ancillary data
- Pashapour-Ahmadabadi et al. (in prep.) studied the one-point statistics and distribution of radio sources
- Böhme et al. (in prep.) studied the radio dipole with different radio surveys
- Hale et al. (2024) studied evolving bias in the LoTSS DR2 wide area survey

- Radio Surveys with LOFAR are great for **cosmology** studies:
 - Combination of large area observations + deep fields with a wealth of ancillary data
- Pashapour-Ahmadabadi et al. (in prep.) studied the one-point statistics and distribution of radio sources
- Böhme et al. (in prep.) studied the radio dipole with different radio surveys
- Hale et al. (2024) studied evolving bias in the LoTSS DR2 wide area survey
- Nakoneczny et al. (2024) and Zheng et al. (in prep.) use cross-correlations with other data to improve such measurements $\Rightarrow \sigma_8$

- Radio Surveys with LOFAR are great for **cosmology** studies:
 - Combination of large area observations + deep fields with a wealth of ancillary data
- Pashapour-Ahmadabadi et al. (in prep.) studied the one-point statistics and distribution of radio sources
- Böhme et al. (in prep.) studied the radio dipole with different radio surveys
- Hale et al. (2024) studied evolving bias in the LoTSS DR2 wide area survey
- Nakoneczny et al. (2024) and Zheng et al. (in prep.) use cross-correlations with other data to improve such measurements $\Rightarrow \sigma_8$
- Heneka et al. (in prep.) combines all these studies to measure a set of cosmological parameters.