

CHORD: The Canadian Hydrogen Observatory and Radio-transient Detector

Seth Siegel **Research Scientist** Perimeter Institute for Theoretical Physics

THE UNIVERSITY OF BRITISH COLUMBIA

Massachusetts Institute of Technology

Instrument Overview

Key Technologies

Key Technologies

Forecasts

Figure by Juan Mena-Parra

Observatory

Figure by Juan Mena-Parra

Instrument Overview

Ndish	512				
Area	14,500 m ²				
T _{sys}	30 K + T _{sky} (v)				
Aperture Efficiency	50%				
SEFD	12 Jy + SEFD _{sky} (v)				
Transient Localization	< 50 milli-arcsec				
Bandpass	300 MHz	1500 MHz			
PSF	17 arcmin	3.5 arcmin			
Field of View	12 deg	2.5 deg			
21 cm Redshift	3.7 0.0				

Wider band (x3)

Finer angular resolution (x2)

Increased sensitivity (x4)

- x2 larger collecting area
- x2 lower system temperature

Compared to CHIME

Wider band (x3)

Finer angular resolution (x2)

Increased sensitivity (x4)

- x2 larger collecting area
- x2 lower system temperature

Reduced instrument chromaticity

Deep-dish design to reduce cross coupling and spill over

Improved redundancy

Repeatable, high-precision (sub-mm) manufacturing & assembly processes

Compared to CHIME

Observing Strategy

Drift scan

Azimuthal pointing: fixed to local meridian

Elevation pointing: manually adjusted between $Dec = 20^{\circ} - 80^{\circ}$

Image by Mohammad Islam (DRAO)

Observing Strategy

Drift scan

Azimuthal pointing: fixed to local meridian

Elevation pointing: manually adjusted between $Dec = 20^{\circ} - 80^{\circ}$

Image by Mohammad Islam (DRAO)

CHORD Science Objectives

21 cm **Intensity Mapping**

21 cm Galaxy Search

Images by C. Blake and S. Moorfield; Walter et al. 2008; M. Kornmesser; D. Champion; Opperman et al. 2012

Fast Radio Burst Search & Localization

Pulsar Search & Timing

Magnetism

Timeline

Jan 2020: CHORD proposed to Canada Foundation for Innovation (CFI).

Mid 2021: CHORD fully funded by CFI with matching contributions from provincial partners.

Late 2021: First end-to-end prototype dishes

roduction facility.

ore array.

ith first 64 dishes.

re array and outriggers.

ce observing period.

Key Technologies

Deep Dish Development Array (D3A)

ASTRONO IN

CHORD Receiver

Deep Dish Development Array (D3A)

6m-diameter composite dishes

- Fabricated on site
- Low focal ratio (f/D = 0.21)
- Sub-mm surface precision

Laser metrology measurements from Islam et al. 2022

CHORD Receiver

Ultra-wideband feed (5:1)

- Aperture efficiency 45-55%
- Side lobes < -20 dB

CHORD Receiver

LNA with Wideband Noise and Power Matching Described in Lai et al. 2023

(D)

FPGA-based digitizer/channelizer

x128 AMD Zynq Ultrascale+ RF System-on-Chip (RFSoC)

- 14-bit, 3 Gsps ADC
- 4-tap polyphase-filter-bank, $\Delta \nu = 360 \text{ kHz}$ (or 180 kHz)

GPU-based correlator/beamformer

x128 Nvidia A40

- Built on kotekan software framework
- Processes 9.6 Tb/sec
- 100 sec baseband buffer
- Fast-cadence (~msec) RFI excision

GPU-based correlator/beamformer

x128 Nvidia A40

- Built on kotekan software framework
- Processes 9.6 Tb/sec
- 100 sec baseband buffer
- Fast-cadence (~msec) RFI excision
- Support for multiple backends:
 - $-N^2$ visibilities at ~1 sec (21cm IM+galaxies)
 - -48 full-Stokes, baseband beams (pulsar search-tin
 - -5000 intensity beams at ~1 msec (FRB search)

GPU-based correlator/beamformer

x128 Nvidia A40

- Built on kotekan software framework
- Processes 9.6 Tb/sec
- 100 sec baseband buffer
- Fast-cadence (~msec) RFI excision
- Support for multiple backends:
 - $-N^2$ visibilities at ~1 sec (21cm IM+galaxies)
 - -48 full-Stokes, baseband beams (pulsar search-tin
 - -5000 intensity beams at ~1 msec (FRB search)

21 cm Backend

Receives 150 Gb/sec. Applies:

- RFI excision, fringestoping, time integration (to 30 sec)
- Relative gain calibration using CorrCal, redundant baseline averaging

New GPU-based FRB search algorithm in development at $\widehat{\mathbf{P}}_{\text{INSTITUTE}}^{\text{PERIMETER}}$

Computational cost roughly proportional to "data rate": $N_{beam} \times N_{freq} / t_{sample}$

Expect to process 10 Gsps per GPU.

Comparison of Different FRB Searches					
	N _{beam}	N _{freq}	t _{sample}	Data Rate	
CHIME	1000	16,000	1 msec	16 Gsps	
CHORD	5000	32,000	1 msec	160 Gsps	Table by Kendrick Smith
SKA-low	500	8000	0.8 msec	5 Gsps	
SKA-mid	1500	4000	0.08 msec	75 Gsps	

Features: frequency-dependent upchannelization, arbitrary formed beam locations, multiple sub-band searches, 100 sec baseband buffer, and early baseband triggers!

FRB Search Optimizer

Search Parameters

θ = { sampling time, upchan boundaries, formed beam locations, ...}

Performs integral over frequency, sky, and burst properties to estimate detection rate for given set of search parameters. FR S

.

Number of FRBs detected per day

FRB Search Simulator

Population Model

 $P(f, DM, \gamma, w, \tau)$

Instrument Model:

- Primary Beam
- Baseline Distribution
- Receiver Temperature
- RFI Environment

Forecasts

HI Power Spectrum

CHORD will carry out a 5 year survey to measure the HI power spectrum between **0 < z < 3.7**

Predicted thermal noise power spectrum (orange) compared to HI power spectrum (**black**).

Use formalism and software described in Salier et al. 2021.

Distance Measures

Optimistic: excludes modes with $k_{\parallel} < 0.01 \ h \ \text{Mpc}^{-1}$ and modes within foreground wedge defined by primary beam width

Pessimistic: excludes modes with $k_{\parallel} < 0.1 \ h \ \text{Mpc}^{-1}$ and modes within foreground wedge defined by 3 x primary beam width

Cosmological Parameters

When combined with next-gen CMB measurements (Planck + Simons Observatory), CHORD significantly reduces uncertainties on standard Λ CDM parameters:

 H_0 (20-60%) and $\Omega_{\rm cdm}$ (15-50%)

and single-parameter extensions:

 M_{ν} (50-80%) and Ω_{k} (35-45%)

Also yields percent-level measurements of Ω_{DE} over a wide redshift range, enabling sensitive tests of dynamical models for dark energy.

Halo Model Analysis Framework

Fast Radio Bursts

CHORD is forecasted to detect **10-20 FRBs per day** with better than **50 milli-arcsec** localization.

Fast Radio Bursts

CHORD is forecasted to detect **10-20 FRBs per day** with better than **50 milli-arcsec** localization.

Assuming FRBs trace star formation rate, CHORD will detect FRBs out to redshift 3 to 4.

Summary

CHORD is a next-generation large-N, small-D radio observatory with a compact core array and very long baseline outriggers sensitive to an ultrawide band (300-1500 MHz).

CHORD has the sensitivity and bandwidth required to

- Make a sub-percent level measurement of the expansion history between redshift 0 3.7
- Construct the largest catalog to date of HI galaxies
- Detect and precisely localize tens of thousands of FRBs
- Detect new pulsars and provide timing/polarimetry of known northern hemisphere pulsars
- Probe the magneto-ionic environment of the ISM and CGM via Faraday tomography

We are building CHORD with a focus on systematic errors. Specifically:

- Reducing its intrinsic chromaticity
- Improving the redundancy of the array elements to enable precise calibration

The 64-dish pathfinder will be operational late this year. The full 512-dish core and two 64-dish outriggers are expected to come online in 2026.

For more information, see <u>chord-observatory.ca</u>

