Neutral hydrogen intensity mapping on Mpc scales with MeerKAT interferometer

Sourabh Paul

Jodrell Bank Centre for Astrophysics

The University of Manchester

Cosmology in the Alps 2024

The University of Manchester

rch South African Radio Astronomy Observatory

UNIVERSITY of the WESTERN CAPE

Single Dish & Interferometric IM (MeerKAT)

Power Spectrum from visibility data

$$k_x = \frac{2\pi}{R}u;$$
 $k_y = \frac{2\pi}{R}v;$ $k_{\parallel} = \frac{2\pi\nu_{21}H_0E(z)}{c(1+z)^2}\tau$

$$P(k_{\perp}, k_{\parallel}) \equiv \frac{A_e}{\lambda^2 B} \frac{R^2 \Delta R}{B} |V(u, v, \tau)|^2 \left(\frac{\lambda^2}{2k_B}\right)^2$$

Power Spectrum from visibility data

MeerKAT Radio telescope

- MeerKAT, precursor to SKA, managed by SARAO. Located in the Karoo region, South Africa.
- 64 dish antennas of 13.5 meter diameter.
- Central core region of 1km houses 48 antennas, other 16 antennas are distributed upto a radius of 4km from the center.
- Dense core facilitates higher sensitivity at low k_{\perp} modes.
- L-band range: 856 ~ 1712 MHz.
- UHF-band range: 544 ~ 1087 MHz.

MIGHTEE

(MeerKAT International GHz Tiered Extragalactic Exploration)

- 20 square deg sky area, L and UHF bands
- COSMOS, CDFS, XMMLSS, ELAIS-S1, ~ few thousand hours

XMMLSS CDFS ELAIS-S1 https://www.mighteesurvey.org/

IM with MeerKAT interferometer

Expected constraints on HI PS with MIGHTEE (COSMOS)

Full MIGHTEE (COSMOS, CDFS, XMMLSS, ELAIS-S1) 20 square degrees, ~ 1000 hrs observation time

HI intensity mapping with the MIGHTEE survey: power spectrum estimates Paul, Santos et al., 2021, MNRAS, 505, 2, 2039

IM with MeerKAT interferometer

Data used ~ 96 hrs (9 observing sessions, > 58 antennas)

J2000 $\alpha = 04^{h}13^{m}26.4^{s}, \ \delta = -80^{\circ}0'0''$

Time resolution: 8s

Frequency resolution: 0.209MHz

Calibration: processMeerKAT + selfcalsBandwidth: 950 ~ 1170 MHzRMS: 3 μJy/beam

Target scan duration: 15 mins

Two sub-bands:1078 MHz (z ~ 0.32)(46 MHz)986 MHz (z ~ 0.44)

Long integration time, avoid bright foreground sources

A first detection of neutral hydrogen intensity mapping on Mpc scales at z ~ 0.32 and z ~ 0.44 Paul, Santos et al., arXiv:2301.11943 Power spectrum (odd scans vis x even scans vis)

A first detection of neutral hydrogen intensity mapping on Mpc scales at z ~ 0.32 and z ~ 0.44 Paul, Santos et al., arXiv:2301.11943

First detection of auto power spectrum

Foreground scatter

Low-level broadband RFI Flagging

Summary

- 21cm Intensity mapping research is at the forefront of cosmology, with the potential to provide new insights into the large-scale structure of the Universe.
- MeerKAT offers a distinctive approach to Intensity Mapping by leveraging both single-dish and interferometric capabilities.
- First detection in auto-correlation with MeerKAT interferometer significant step towards precision cosmology with intensity mapping with new generation of radio telescopes and upcoming SKA.
- Many challenges are yet to overcome, detection are still limited to small scales.

