The spectral index-flux density relation for extragalactic radio sources selected at meter and decametre wavelengths

> Pratik Dabhade (IAC, Spain)

18th - 22nd March 2024 Cosmology in the Alps conference

TYPICAL RADIO SKY

TYPICAL RADIO SKY

• Radio surveys provide a wealth of data.

• Gain the ability to study populations and their distribution.

- Determine if results applicable to a population as a whole.
- Can be driving force behind of many new radio telescopes!

However, they are more useful with optical data!

STUDYING RADIO SOURCE POPULATION

- Any systematic variation of spectral index with flux density can possibly be used to constrain models of cosmological evolution of extragalactic radio sources (Dagkesamanskii 1970; Laing & Peacock 1980; Condon 1984; Kulkarni et al. 1990; Calistro Rivera et al. 2017).
- In absence of all-sky deep spectroscopic surveys, such studies allows infer distant sources and examine the evolution.
 - Steeper spectral index -> Older sources ?

Fainter radio sources -> Distant sources ?

Flatter spectral index -> younger sources ?

Source Population and Cosmological Evolution: Any systematic variation in spectral properties with flux density suggests a change in the mix of source populations at different flux levels. This also has implications for the cosmological evolution of radio sources of different powers, suggesting that the relative contributions of different types of radio galaxies (e.g., Fanaroff-Riley types I and II, Starbursts) might change over cosmic time. Models must account for this evolution, in order to realistically describe the cosmic history of AGN radio activity in the universe.

150G

1982A&A...

Spectral Index – Flux Density Relation for Extragalactic Radio Sources Found in Metre-wavelength Surveys

Gopal-Krishna* and H. Steppe

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn 1, Federal Republic of

Received May 13, 1981; accepted May 24, 1982

 $S_{
u} \propto
u^{lpha}$ — Spectral index Frequency Flux

Astron. Astrophys. 113, 150-154 (1982)

Gopal-Krishna* and H. Steppe

Spectral Index – Flux Density Relation for Extragalactic Radio Sources Found in Metre-wavelength Survey:

N WHOLE SAMPLE*(515 SOURCES) S₃₂₇ ≥ 0.4 Jy 100 S₃₂₇ (med) = 0.95 Jy Q(med) = -0.856±0.011 50 0.5 -0.5 -1.5 0.0 -1.0 α²⁷⁰⁰ * Sample from Ooty Occultation survey @ 327 MHz (Joshi & Singal 1980)

Astron. Astrophys. 113, 150-154 (1982)

Spectral Index – Flux Density Relation for Extragalactic Radio Sources Found in Metre-wavelength Surveys

Gopal-Krishna* and H. Steppe

Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn 1, Federal Republic of German

Received May 13, 1981; accepted May 24, 1982

1984A&A

2nd paper further confirming the relation with more complete samples (408 MHz) The spectral index/flux density relation for extragalactic radio sources found in metre-wavelength surveys: an updating

H. Steppe¹ and Gopal-Krishna²

- ¹ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-5300 Bonn 1, Federal Republic of Germany
- ² Tata Institute of Fundamental Research, Radio Astronomy Center, I.I. Sc. Campus, P.O. Box 1234, Bangalore-560 012, India

Received December 21, 1983; accepted January 11, 1984

398

R. WINDHORST, D. MATHIS AND L. NEUSCHAEFER 1990

Further confirmed by Windhorst et al. (1990), Ficarra et al. (1985) & Vigotti et al. (1989)

Contradictory result showing constant spectral index at lower flux densities..

Does the S-alpha relation shows a flattening below S₄₀₀ ~ 1 Jy ?

A&A 675, L3 (2023) https://doi.org/10.1051/0004-6361/202346593 © The Authors 2023

LETTER TO THE EDITOR

The spectral index-flux density relation for extragalactic radio sources selected at metre and decametre wavelengths

Pratik Dabhade^{1,2} and Gopal-Krishna³

Sensitive large sky area low frequency radio surveys -With negligible missing flux -Coarser angular resolution

Instrument: -> VLA Low-band Ionosphere and Transient Experiment (VLITE)

https://science.nrao.edu/vlass/commensal-surveys

Tracy et al. 2016, Poliensky et al. 2016 & Peters et al. 2021

Instrument: -> VLA Low-band Ionosphere and Transient Experiment (VLITE)

https://science.nrao.edu/vlass/commensal-surveys

Tracy et al. 2016, Poliensky et al. 2016 & Peters et al. 2021

The VLASS Commensal Sky Survey (VCSS)

VCSS1 Mosaics RMS

		Central Frequency	340 MHz	
		Bandwidth	33.6 MHz	
		Angular Resolution	$\sim 15''$	
		\mathbf{LAS}	8.′5	
		Average sensitivity (1σ)	$3 \text{ mJy } \text{bm}^{-1}$	201
		Sky Coverage	$30,000 \text{ deg}^2$	1
		Sources	52,844	/
Sec. 1				
	Table	1. VCSS Epoch 1 Bright	Catalog summary	
	Table	1. VCSS Epoch 1 Bright	Catalog summary	

Instrument: -> VLA Low-band Ionosphere and Transient Experiment (VLITE)

https://science.nrao.edu/vlass/commensal-surveys

Tracy et al. 2016, Poliensky et al. 2016 & Peters et al. 2021

F. de Gasperin et al. 2021, A&A 648, A104

https://lofar-surveys.org/lba.html

LOFAR LBA Sky Survey (LoLSS)

F. de Gasperin et al. 2021, A&A 648, A104

https://lofar-surveys.org/lba.html

LOFAR LBA Sky Survey (LoLSS) F. de Gasperin et al. 2021, A&A 648, A104

https://lofar-surveys.org/lba.html

LoLSS preliminary data release			
Central frequency	54 MHz		
Bandwidth	42 - 66 MHz		
Angular resolution	47″		
Average Sensitivity	5 mJy beam-1		
Sky coverage	740 deg ²		
Sources	25247		

<u>The VLASS Commensal Sky Survey (VCSS)</u> 340 MHz

- ✓ Confirming S-alpha relation at metre-wavelength using higher source statistics.
- ✓ Extending to lower flux density levels.✓ Less affected by source curvature issue.

 α_{340}^{1400}

1400

 α_{54}

✓Establishing S-alpha relation at Decametres for the first time.

LOFAR LBA Sky Survey (LoLSS)

54 MHz

Flux density range ~ 0.2 < S < 2 Jy

Dabhade & Gopal-Krishna 2023, A&A 675, L3

VCSS - NVSS

Range/bin (0)	Range of S _{340 MHz} (1)	$S_{340 \text{ MHz}} (\text{median})$ (2)	Number (3)	α_{340}^{1400} (median) (4)	ND (5)
All sources	200.0-135 306 mJy	461	42 890	-0.811 ± 0.003	1272
R1	200.0-235.7 mJy	218	3574	(-0.765) -0.763 (-0.760)	45
R2	235.7-269.9 mJy	252	3575	(-0.782) -0.778 (-0.775)	55
R3	269.9-307.5 mJy	288	3573	(-0.792) -0.787 (-0.782)	64
R4	307.5-350.0 mJy	328	3574	(-0.795) -0.791 (-0.786)	59
R5	350.0-400.5 mJy	374	3575	(-0.795) -0.789 (-0.783)	85
R6	400.5-461.1 mJy	430	3573	(-0.808) - 0.801 (-0.794)	107
R7	461.1-540.1 mJy	498	3574	(-0.808) - 0.800 (-0.792)	119
R8	540.1-648.3 mJy	590	3575	(-0.821) -0.815 (-0.808)	125
R9	648.3-803.2 mJy	716	3574	(-0.823) -0.814 (-0.806)	132
R10	803.2-1071.4 mJy	921	3574	(-0.834) -0.825 (-0.816)	148
R11	1071.4-1676.3 mJy	1299	3575	(-0.850) -0.840 (-0.828)	167
R12	1676.3-135 306 mJy	2547	3574	(-0.862) -0.851 (-0.838)	166

Dabhade & Gopal-Krishna 2023, A&A 675, L3

Lolss - NVSS

Range/bin (0)	Range of S _{54 MHz} (1)	S _{54 MHz} (median) (2)	Number (3)	α_{54}^{1400} (median) (4)	ND (5)	VSS (6)
All sources	200–129710 mJy	439	7746	-0.860 ± 0.004	1629	699
R1	200.0-235.0 mJy	218	969	-0.840 ± 0.008	192	5
R2	235.0–278.4 mJy	255	968	-0.852 ± 0.008	193	10
R3	278.4-343.7 mJy	307	968	-0.857 ± 0.009	204	12
R4	343.7-438.9 mJy	386	968	-0.857 ± 0.009	210	18
R5	438.9–593.7 mJy	501	968	-0.860 ± 0.010	187	10
R6	593.7-867.0 mJy	706	968	-0.872 ± 0.011	222	200
R7	867.0-1554.0 mJy	1116	968	-0.862 ± 0.013	219	229
R8	1554–129 710 mJy	2507	969	-0.870 ± 0.018	202	215

Flux density range ~ 0.2 < S < 2 Jy ----

Dominated by intrinsically powerful, distant radio sources of synchrotron emission, having a median redshift of ~1 (e.g., Condon 1989).

$\frac{140}{340}$

 α_{54}^{1400}

3 ഹ് 67 &A A K 2023, Gopal-Krishna প্ন Dabhade

The spectral index-flux density relation for extragalactic radio sources selected at metre and decametre wavelengths

Astronomy

Astrophysics

The spectral index-flux density relation for extragalactic radio sources selected at metre and decametre wavelengths

Pratik Dabhade^{1,2} and Gopal-Krishna³

-0.90 (a) 42890 sources -0.88-0.86-0.84Median (α_{340}^{1400}) 0.82--0.80 -0.78 -0.76--0.74-0.2 0.5 0.6 0.7 0.8 0.9 1 2.D 0.3 0.4 Flux density at 340 MHz (Jy)

Astronomy

Astrophysics

- ✓ Demonstrates that median spectral index (𝔅_{median}) becomes progressively flatter towards decreasing flux densities below S_{340 MHz} ~1–2 Jy, where 𝔅_{median} has been known to attain its steepest value.
- ✓ This is in accord with the trend initially reported in the 1980s (Gopal-Krishna & Steppe 1982; Steppe & Gopal-Krishna 1984) and also seen in some recent studies (Tiwari 2019; de Gasperin et al. 2018) using the TGSS ADR1 survey at 147 MHz.

The spectral index-flux density relation for extragalactic radio sources selected at metre and decametre wavelengths

Astronomy

Astrophysics

Pratik Dabhade^{1,2} and Gopal-Krishna³

-0.89(b) 7746 sources 1400-0.88-0.87✓ Determination of α_{median} -S₅₄ relation for ✓ Determination of a_{median}-S₅₄ relation for extragalactic sources selected at decametre wavelengths.
 ✓ Flattening (*although milder*) of spectral index @ lower -0.86flux densities observed. -0.85-0.84 $-0.83\frac{1}{02}$ ¢.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2.0 Flux density at 54 MHz (Jy)

The spectral index-flux density relation for extragalactic radio sources selected at metre and decametre wavelengths

Astronomy

Astrophysics

Supported by observations of Calistro Rivera et al. 2017, de Gasperin et al. 2018a, Williams et al. 2021.

Summary & Future scope

 Determined 'a_{median} - flux density' for extragalactic radio sources @ metre wavelengths with significantly better statistics.

- Established 'amedian flux density' for extragalactic radio sources @ ~ decametre wavelengths.
- Confirmed spectral flattening at lower flux densities.

Determine 'a_{median} flux density' relation using complete redshift information.
Sub-population studies (identifying AGNs, SFGs etc)
More sensitive wide-sky area low frequency surveys
LoLSS-DR3
14–30 MHz LOFAR Decametre Sky Survey (LoDeSS)
GLEAM-X

Figure 6: An aerial photograph taken during an afternoon in 1965. The original colour slide was processed in December 1965; the shadow lengths and azimuths make the likely date of the photograph early October (more likely, given the lush appearance of the scene) or early March. The photograph is likely to have been taken by Vern Reid (courtesy: Estate of Grote Reber).

Credit: George, Orchiston, & Wielebinski 2017, Journal of Astronomical History and Heritage