Probing HI evolution during EoR through bispectrum multipoles

Sukhdeep Singh Gill¹, Suman Pramanick¹, Somnath Bharadwaj¹, Abinash Kumar Shaw², Suman Majumdar³

¹Department of Physics & Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur 721302, India ²Astrophysics Research Center of the Open University (ARCO), The Open University of Israel, University Road, Ra'anana 4353701, Israel. ³Department of Astronomy, Astrophysics and Space Engineering, Indian Institute of Technology, Indore 453552, India

We study the squeezed monopole (B_0^0) and quadrupole (B_2^0) moments of the 21-cm bispectrum (BS) from EoR simulations. Both B_0^0 and B_2^0 are positive at the early stage of EoR where the mean neutral hydrogen (HI) density fraction $\bar{x}_{HI} \approx 0.99$. The subsequent evolution of B_0^0 and $0.56 \ Mpc^{-1}$, respectively) is punctuated by two sign changes which mark transitions in the HI distribution. The first sign flip where B_0^0 becomes negative occurs in the intermediate stages of EoR ($\bar{x}_{HI} > 0.5$), at large scale first followed by the intermediate scale. This marks the emergence of distinct ionized bubbles in the neutral background. B_2^0 is relatively less affected by this transition, and it mostly remains positive even when B_0^0 becomes negative. The second sign flip, which affects both B_0^0 and B_2^0 , occurs at the late stage of EoR (\bar{x}_{HI} < 0.5). This marks a transition in the topology of the HI distribution, after which we have distinct HI islands in an ionized background. This causes B_0^0 to become positive. The negative B_2^0 is a definite indication that the HI islands survive only in under-dense regions.

Redshift Space Distortion (RSD)

 Peculiar velocities introduce anisotropy along line of sight in the observed

• Bispectrum is function of shape, size and orientation of triangle wrt LoS

The effect of RSD on bispectrum can be studied by decomposing it into spherical harmonics

$$B_l^m(k_1, k_2, k_3) = \sqrt{\frac{2l+1}{4\pi}} \int [Y_l^m(\hat{p})]^* B^s(\hat{p}, k_1, k_2, k_3) d\Omega_{\hat{p}}$$

•
$$[\Delta_l^S]^3 = \frac{k^6 B_l^0}{(2\pi^2)^2}$$

• *k* is the largest side of triangle

Interpretation

