Interpreting 21-cm Upper Limits from LOFAR EoR

Garrelt Mellema

Department of Astronomy / Oskar Klein Centre Stockholm University

Raghu Ghara, Sambit Giri, Rajesh Mondal, Ivelin Georgiev, Ilian Iliev, Saleem Zaroubi, Benedetta Ciardi

Content

- Digging for the 21-cm power spectrum
- Simple cases
- Interpretation in terms of astrophysics: sources vs. IGM
- Multi-redshift IGM constraints
- Summary & conclusions

Low frequency interferometers

MWA (Australia) LOFAR (NL/Europe)

Google Maps

Hard work!

What we are hoping for...

Hard work!

What we are fearful of..

Future with SKA-Low

SKA-Low Aperture Array Verification System (Australia)

7 March 2024: first of the 131,072 SKA-Low antennas deployed

Current power spectra upper limits

Barry et al. (2022)

Redshifted 21-cm signal

• Observed with the CMB as background signal:

$$\delta T_{\rm b} = 27 x_{\rm HI} (1+\delta) \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right) \left(\frac{1+z}{10}\right)^{1/2} \quad {\rm mK}$$

- Depends on:
 - HI density: x_{HI} (1+δ)
 - Spin (excitation) temperature: **T**_s

Simple case 1: only x_{HI}fluctuations

$$\delta T_{\rm b} = 27 x_{\rm HI} (1+\delta) \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right) \left(\frac{1+z}{10}\right)^{1/2} \quad {\rm mK}$$

• If $T_S \gg T_{CMB}$: $\Delta_{21}^2(k) < 72.9(1+z) \text{ mK}^2$ largest when k-scale fully matches sizes of HII regions.

• For arbitrary, homogeneous
$$T_s: \Delta_{21}^2(k) < 72.9(1+z) \left(1 - \frac{T_{CMB}}{T_S}\right)^2 mK^2$$

Simple case 1

Simple case 2: Unheated neutral IGM

Adiabatic, homogeneous T_s and x_{HI} =1, only density fluctuations:

 $T_s = 0.02(1+z)^2 K$ (unheated IGM), $T_{CMB} = 2.7(1+z) K$

$$\Delta_{21}^{2}(k) = 72.9\Delta_{\rm m}^{2}(k)(1+z)^{-1} \left(1 - \frac{135}{1+z}\right)^{2} {\rm mK}^{2}$$
 (linear bias model)
Abdurashidova et al. (2022)

At z~8: Δ^2_{21} (k=0.3 h Mpc⁻¹) ≈ (50 mK)² Above HERA UL! At z~9: Δ^2_{21} (k=0.075 h Mpc⁻¹) ≈ (15 mK)² Below LOFAR UL!

Simple case 2

Barry et al. (2022)

General inference

IGM inference for LOFAR ULs

Inference on IGM parameters

lonized regions in IGM with

uniform low T_s:

Parameters:

- <×_{HII}>
- T_s
- (R_{peak}, ΔR) sizes ionized regions
- <δT_b>

High T_s regions embedded in low T_s environment (non-uniform T_s):

Parameters:

- **f**_{heat}
- <T_>
- (R_{peak}, ΔR) sizes heated regions

<x_{HII}>
<δT_b>

Ghara, Giri, GM et al. (2020)

LOFAR UL Implications for IGM

Ruled out (2σ) models must have:

- T_s < 3 K
- <x_{HII}> ∈ [0.13, 0.74]
- R_{peak} ∈ [8, 58] Mpc
- ∆R ∈ [16, 185] Mpc
- $<\delta T_{b}> \in [-251, -57] \text{ mK}$

Ghara, Giri, GM et al. (2020)

Multi-redshift Upper Limits?

- Next LOFAR EoR ULs will be for three redshifts (10.4, 9.1, 8.1); joint interpretation preferable.
- But: IGM parameters by construction constrain a single redshift.
- Do IGM parameters evolve in a predictable / parameterizable way?
- Ghara et al. (2024): 21-cm scale-dependent bias $b_{21}^2 = \frac{\Delta_{21}^2(k)}{\Delta_{21}^2(k)}$

21-cm Bias Evolution

Ghara et al. (2024)

Evolution of A and γ: 5 parameters Reionization history: 3 parameters

Testing the Bias Evolution Model

- Developed from large sample of GRIZZLY models.
- Tests on C²Ray and 21cmFAST results show that the model is robust.

Ghara et al. (2024)

Understanding the 21-cm Bias

- Do these parameters have any physical meaning?
- Under investigation; some connections already known:
 - Break⇔mean free path for ionizing photons (Georgiev et al. 2022)
 - Amplitude at large scales ⇔ source bias & ionization fraction (e.g. McQuinn & D'Aloisio 2018)

Georgiev, GM et al. (2022)

Summary

- Current upper limits are on the edge of yielding hard constraints.
- Parameter inference can be done on source parameters or IGM parameters.
- Constraints on IGM parameters should be model-independent but are for a single redshift.
- The 21-cm bias appears to yield a parameterizable evolution which can be used for IGM inference.
- The shape of the 21-cm bias curves connect to key physics but needs further investigation.

Upper limits exclude scenarios

Ghara, Giri, GM et al. (2021)

Upper limits exclude scenarios

Marginalised 1D PDFs

HERA collaboration et al. (2022) effectively 150 hrs, k=0.25 Mpc⁻¹

 Δ^2 < (21 mK)² at z=7.9 Δ^2 < (59 mK)² at z=10.4

Analysis: At both z=10.4 and 7.9, the neutral IGM has been heated above the adiabatic value!