Impact of astrophysical scatter on the [H I]_{21cm} bispectrum

Chandra Shekhar Murmu (IIT Indore)

Collaborators: Kanan K. Datta (Jadavpur University), Suman Majumdar (IIT Indore),

Thomas R. Greve (Cosmic Dawn Center)

Background

- I work on simulations of cosmic reionization and line-intensity mapping (LIM)
- I investigate models of reionization and work on forecasting and interpretation of observable LIM summary statistics
- Soon to submit my PhD thesis

Outline of the Talk

- Epoch of Reionization and line-intensity mapping
- Impact of line-luminosity scatter on [C II]_{158µm} LIM signal
- Astrophysical scatter in star-formation rate
- Simulating $[H I]_{21cm}$ signal with scatter
- Impact of scatter on the [H I]_{21cm} bispectrum
- Detectability
- Future scope

The Epoch of Reionization (EoR)

Credit: NAOJ

- First luminous sources (galaxies) were formed
- Ionizing radiation from the luminous sources reionized the neutral IGM

How to probe the EoR universe?

Probing the EoR: galaxies

Challenges!

- Demanding sensitivity limits
- Demanding resolutions
- Expensive to operate, therefore it becomes impractical to map large galaxy samples

Line-intensity mapping

Accumulate the cumulative flux of numerous sources from a comparatively small region (Voxel)

Probing the EoR with Intensity Mapping: galaxies and IGM

Observable summary statistics

Modelling (analytical/numerical) of observable summary statistics (e.g. power spectrum) is essential to interpret LIM observations

$[C \parallel]_{158\mu m}$ vs M_{halo} relation

$[C \parallel]_{158\mu m}$ line-luminosity scatter: SIMBA + SIGAME

$[C \parallel]_{158\mu m}$ line-luminosity scatter: SIMBA + SIGAME

This is expected to impact the observable summary statistics (e.g. power spectrum)

Impact of line-luminosity scatter on the [C II] power spectrum

The non-uniform scatter impacts the power spectrum regardless of the fit used for comparison

When compared against the most-probable fit, this impact can be modelled robustly, unlike the mean fit

How variability in the star-formation rate (astrophysical scatter) affects reionization of the IGM?

Impact on power spectrum

Hassan et al. 2022, ApJ, 931, 62

The ionization power spectrum is mostly unaffected, when astrophysical scatter is included in modelling reionization

Impact on power spectrum

Hassan et al. 2022, ApJ, 931, 62

The ionization power spectrum is mostly unaffected, when astrophysical scatter is included in modelling reionization

- Ionization field is not directly observable, unlike the brightness temperature fluctuations of the [H I]_{21cm} signal
- [H I]_{21cm} signal is known to be highly non-Gaussian and astrophysical scatter might introduce additional non-Gaussianities

[H I]_{21cm} bispectrum

[H I]_{21cm} signal is known to be highly non-Gaussian and astrophysical scatter might introduce additional non-Gaussianities

Higher order statistics such as bispectrum can capture non-Gaussianities in the [H I]_{21cm} signal

$$k_2$$

 k_1
 k_1
 k_2
 k_3
 k_1
 k_1
 k_1
 k_1
 k_1
 k_1
 k_2 , \vec{k}_2 , \vec{k}_3) = $\frac{1}{N_{ ext{tri}}V} \sum_{[\vec{k}_1 + \vec{k}_2 + \vec{k}_3 = 0] \in m} ilde{\Delta}T_b(\vec{k}_1) ilde{\Delta}T_b(\vec{k}_2) ilde{\Delta}T_b(\vec{k}_3)$

Simulations of the [H I]_{21cm} signal

Usual reionization source model:

$$N_\gamma \propto {
m SFR}(M_h,z)$$

Simplistic model for astrophysical scatter: $N_\gamma \propto {
m SFR}(M_h,z) +$ Log-normal scatter

We generate 50 realizations of the [H I]_{21cm} signal for each of six neutral fractions that we considered (a total of 300 simulations were done)

Bispectrum triangle configurations

Majumdar et al. 2020, MNRAS, 499(4), 5090

scale k_1 [Mpc⁻¹] **Statistical** 0.18 0.31 0.53 0.89 1.50 2.55 4.31 0.95 0.925 significance 1 0.825 k⁷/k⁷ k⁷/k 22 XHI 0.625 0.525 $/\sigma_{\Delta B}$ 06.0 0.925 r 0.825 k/k k 22 30 \overline{X}_{HI} 0.625 0.525 20 x_{HI} 0.81 0.925 1 0.825 4/4 0.725 $|\langle \Delta B \rangle / \sigma_{\Delta B}|$ 22 XH 0.625 0.525 A total of 300 realizations ≈ 0.72 were simulated 0.925 ¹ 0.825 k⁷/k⁷ k⁷/k¹ -3 ХHI 0.625 0.525 2 0.62 0.925 ¹ 0.825 4⁷/4⁷/4⁷/4⁷ 22 XHI 0.625 0.525 0.53 0.925 1 0.825 4 1/2 4 0.725 22 ХH 0.625 20 Murmu et al. 2023, arXiv: 2311.17062 0 525 0.525 625 725 825 925

 $\cos\theta$

 $\cos\theta$

 $\cos\theta$

 $\cos\theta$

cosθ

 $\cos\theta$

 $\cos\theta$

Impact of scatter on the [H I]_{21cm} bispectrum

Statistical significance

Murmu et al. 2023, arXiv: 2311.17062

Small-scale ionized bubbles

The small-scale ionized bubbles vary across different realizations of the astrophysical scatter

Detectability

The signal-to-noise ratio is not sufficient when observed with 1000 hrs of SKA1-Low

Detectability

However, more optimistic scenarios can be adopted which observes for a fixed duration per year (e.g. 1000 hrs/year)

This can be extended for a couple of years after SKA1-Low is operational

Future scope

- Impact of astrophysical scatter on the cross-correlation of [H I]_{21cm} and [C II]_{158µm}, CO LIM signals
- Incorporate density dependent recombination
- Other sources of reionization can be included
- Line-of-sight (anisotropies), such as redshift space distortion and light-cone effect might affect the impact of scatter

Once again...

- I am interested to explore further avenues in LIM
- Soon to submit my PhD thesis (currently looking for Postdoctoral positions)

