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Radio Pulsar Timing Arrays
Numerous PTAs are measuring pulsar timing delays: NanoGRAV,
Parkes PTA, European PTA, Chinese PTA . . .
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Gravitational Wave Detection
Gravitational waves create correlated timing delays between
different pulsars:
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Angular correlation power spectrum
Proof of GW origin comes from angular correlations of timing delays
(Hellings & Downs, 1983)

NanoGRAV confirmed this signal in June 2023 (arXiv: 2306.16213)
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Origin of gravitational waves
Favorite astrophysical explanation is mergers of supermassive
black holes (SMBHs) from galaxy mergers
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But there is a problem: merger rate is not high enough to explain
signal!
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The final parsec problem
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The final parsec problem
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New physics origins for GWs?
Beyond astrophysics, theorists have proposed other possible GW
origins:

Instead, we propose that dark matter dynamical friction could solve

the final parsec problem for SMBHs
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Our proposal
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Dynamical friction
Chandrasekhar (1943) showed that a heavy body moving through
cloud of lighter particles experiences gravitational drag force:

F. van den Bosch

SMBHs move through a cloud of dark matter; can this provide
enough friction to solve final parsec problem?
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DM “spike” around SMBHs
Dark matter density is enhanced near black holes. The spike profile
depends on properties of the DM: noninteracting (CDM) or
self-interacting (SIDM).
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Can spike absorb the heat produced?

The SMBHs must lose ∼ GM1M2/(0.1 pc) of energy to merge.

Compare to binding energy of spike, ∼ G
∫

ρ(x1)ρ(x2)/|~x1 − ~x2|.
The spikes are blown apart, but the SIDM core may survive.

SIDM core

can absorb heat

SIDM core disrupted

dm
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DM Self-interaction cross section
The SIDM cross section may depend on relative velocity of DM
particles,

We model massive

mediator exchange by

the black line:

a = 0 for v < vt,

a = 4 for v > vt.

Transition speed vt

goes as (mediator

mass / DM mass) ×c.

Mediator could be

“dark photon”
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Velocity-dependent self-interactions
Velocity-dependent SIDM scattering is favored for solving
small-scale structure problems of cold DM,
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Dark photon model resolves tensions
Tension: absorbing the frictional heat favors a = 0, while solving the
final parsec problem favors a > 0:

allowed

Merger takes too long

Core too small to absorb heat

Massive mediator (dark photon) reconciles the two requirements
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Gravitational wave signal
Energy spectrum of GWs emitted in a merger with separation R:

dE

df
=

GqM2
1

3fR
×

Pgw

Pgw + Pdf

where R ∝ f−2/3, q = M2/M1 ≤ 1, Pgw = power emitted in GWs,
Pdf = power lost to dynamical friction.

Must integrate over cosmological SMBH population; characteristic
strain is

h2c(f) =
4G

πc2f

∫

dz dM1 dq
d3n

dzdM1dq

dE

df
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Characteristic strain spectrum
Characteristic strain versus frequency; DM friction softens spectrum
at low f

J.Cline, McGill U. – p. 21/25



Fit to GW signal
Best fits prefers maximum possible DM friction

fit to GW
signal

timescale

merger

dm
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Compatibility w/ small scale structure
GW allowed cross sections overlap with small scale structure
determinations (shaded region)
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Conclusions

Pulsar timing observes stochastic GW background

Supermassive black holes are favored astrophysical source

But they suffer from decades-old final parsec problem

Self-interacting dark matter can provide dynamical friction
to solve the problem

Required parameters agree with those already suggested
to solve small-scale structure problems of cold dark matter

Simulations may be required to confirm the picture
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Backup: GW versus DF power

Power in GW emission:

Pgw =
32

5
q2(1 + q)

G4

c5

(

M1

R

)5

Power in dynamical friction:

Ni = fraction of DM particles in spike with speed less than
ith BH.
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