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Radio Pulsar Timing Arrays

Numerous PTAs are measuring pulsar timing delays: NanoGRAV,
Parkes PTA, European PTA, Chinese PTA ...




Gravitational Wave Detection

Gravitational waves create correlated timing delays between
different pulsars:




Angular correlation power spectrum

Proof of GW origin comes from angular correlations of timing delays
(Hellings & Downs, 1983)
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NanoGRAV confirmed this signal in June 2023 (arxiv: 2306.16213)
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Origin of gravitational waves

Favorite astrophysical explanation is mergers of supermassive
black holes (SMBHSs) from galaxy mergers

image: NANOGrav

But there is a problem: merger rate is not high enough to explaln
signal!




The final parsec problem
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The final parsec problem
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The final parsec problem
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The final parsec problem
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The final parsec problem
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The final parsec problem
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New physics origins for GWs?

Beyond astrophysics, theorists have proposed other possible GW
origins:

Inflationary GW Phase transitions

Image credit: NAOJ Image credit: Weir et al (2016)

Cosmic strings Domain Walls

Image credit: Kitajima et al (2023) Image credit: Hiramatsu et al (2013)
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Instead, we propose that dark matter dynamical friction could solve
the final parsec problem for SMBHs
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Our proposal

Gravitational wave frequency [yr_l]
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Dynamical friction
Chandrasekhar (1943) showed that a heavy body moving through
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SMBHs move through a cloud of dark matter; can this provide
enough friction to solve final parsec problem?
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DM “‘spike” around SMBHs

Dark matter density is enhanced near black holes. The spike profile
depends on properties of the DM: noninteracting (CDM) or
self-interacting (SIDM).
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Can spike absorb the heat produced?

The SMBHs must lose ~ GM; M- /(0.1 pc) of energy to merge.
Compare to binding energy of spike, ~ G [ p(x1)p(x2)/|F1 — Z2].
The spikes are blown apart, but the SIDM core may survive.
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DM Self-interaction cross section

The SIDM cross section may depend on relative velocity of DM

particles,
a
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Velocity-dependent self-interactions

Velocity-dependent SIDM scattering is favored for solving
small-scale structure problems of cold DM,
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Dark photon model resolves tensions

Tension: absorbing the frictional heat favors a = 0, while solving the

final parsec problem favors a > 0:
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Massive mediator (dark photon) reconciles the two requirements
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Gravitational wave signal

Energy spectrum of GWs emitted in a merger with separation R:
d_E B GqM? y Py,
df  3fR = Puy+ Py

where R oc f~2/3, ¢ = My/M; < 1, Py, = power emitted in GWs,
Pys = power lost to dynamical friction.

Must integrate over cosmological SMBH population; characteristic
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Characteristic strain spectrum

Characteristic strain versus frequency; DM friction softens spectrum

at low f
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vy [km /s

Fit to GW signal

Best fits prefers maximum possible DM friction
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Compatibility w/ small scale structure

GW allowed cross sections overlap with small scale structure
determinations (shaded region)
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Conclusions

Pulsar timing observes stochastic GW background
Supermassive black holes are favored astrophysical source
But they suffer from decades-old final parsec problem

Self-interacting dark matter can provide dynamical friction
to solve the problem

Required parameters agree with those already suggested
to solve small-scale structure problems of cold dark matter

Simulations may be required to confirm the picture
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Backup: GW versus DF power

Power in GW emission:

32 G (M’
Pow = €q2(1 + Q)C—g) (f)

Power in dynamical friction:
Pdf = 12a qzw.,/ 1+ q (GM1)3/2R1/2

[ (32 )

N; = fraction of DM particles in spike with speed less than
ith BH.
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