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MAPS IN THE NEABY UNIVERSE?
WEAK LENSING APERTURE MASS MAPS

A map that measure the projected total mass within a certain aperture
A compression of galaxy survey data
 
Contains both Gaussian and non-Gaussian information

Oguri+ (2012)

2 × N ​ ⟶gal 2 × N ​ (∼pix 30 galaxies per arcmin )2
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COSMOLOGY WITH WEAK LENSING MASS MAPS
WL surveys already have
competitive constraints on S8 from
power spectra/2pt correlation
functions
However, these constraints are in
increasing tension with early-time
measurement
High-order statistics as an
additional consistency test

Peak statistics
Higher moments in WL maps
3pt-correlation/bispectra
Minkowski functionals
Density split statistics
Field-level inference

   ​

Snowmass (2021)
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S =8 σ ​ ×8 ​Ω ​/0.3m
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MID S/N PEAKS
Peaks from galaxy/group scale
halos + random fluctuation
The peak function can be modelled
analytically or numerically
More sensitive to systematics such
as boost and dilution effect,
intrinsic alignment, etc.

HIGH S/N PEAKS
Peaks from massive halos (clusters)
Could obtain redshift info through
cross-matching
Complicated mass--observable
relation and selection function to
model

Kacprzak+ (2016) Miyazaki+ (2018) 6
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DATA:  SUBARU HYPER SUPRIME-CAM
HSC: 1.8 sq deg wide field camera on the 8.2m Subaru Telescope
Collaboration between Japan, Taiwan and Princeton University
Multi-band photometry with average i-band seeing at 0''.59
Year-3 data: 35 million raw galaxies over ~450 sq deg

Li+ (2022)
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WEAK LENSING MAPS IN HSC
Convolve galaxies' shear with a truncated isothermal profile
 (Schneider 1996) to maximise lensing signals from galaxy clusters
Use only high-z (z > 0.7) source galaxies to avoid dilutions from
cluster member galaxies

Remove innermost part of the halo

Truncated to remove
2-halo contributions

Remove source galaxies at low redshift to
avoid dilutions from cluster member galaxies

Chen+ (in prep.)
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GETTING THE OBSERVABLE

Signal map
(Aperture mass map)

Noise map
(Through randomise source
galaxies shape)

Masking

Observable:
Signal-to-Noise ratio map 

Peak Detection
130 peaks with S/N > 4.7⇒

# of WL peaks and their counterparts in optical cluster catalogue

Chen+ (in prep.)
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WEAK LENSING MAPS IN HSC

Chen+ (in prep.)
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WHERE DOES OUR SENSITIVITY COME FROM?

# of halos(M , z)
∥

Halo density(M , z)
×

Volume(z)

Similar to Cluster Cosmology!

Sunayama+ (2023)
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WHY USE WL PEAKS INSTEAD?

# of halos(M , z)
∥

Halo density(M , z)
×

Volume(z)

Planck 2018

Sunyaev–Zeldovich Effect
Weak Lensing

X-ray Thermal Bremsstrahlung

Optical

X-ray: NASA/CXC/MIT/E.-H Peng et al;
Optical: NASA/STScI

 

NASA, ESA, and S. Beckwith and the HUDF Team

Observable—Mass Relation
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WHY USE WL PEAKS INSTEAD?

Planck 2018

X-ray: NASA/CXC/MIT/E.-H Peng et al;
Optical: NASA/STScI

 

NASA, ESA, and S. Beckwith and the HUDF Team

Mass

λ
L ​X
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ν ​obs
ξ ​SZ

Observable

# of halos(M (O), z)
∥

Halo density(M , z)
×

Volume(z)

Observable—Mass Relation



WHY USE WL PEAKS INSTEAD?
Direct Observable—Mass Relation!

Bleem+(2015) Mantz et al. 2015 Oguri et al. 2017 This work

tSZ X-ray Optical Weak Lensing

y ​ ∝SZ n ​e L ​ ∝X n ​e
2 λ ​ ∝rich M ​∗ M ​ ∝aper M ​2D
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THE MASS OBSERVABLE RELATION

Adapted from Oguri+ (2018)

(M ​, z ​, c ​)200c cl 200c

1. Draw realisations of redshift for source
galaxies to create semi-real 3D box

2. Paint a mock NFW-like halo randomly
on to the sky

3. Run mock observations to get the
observable

4. Repeat million times
5. Obtain the selection function and

mass-observable relation as a function
of halo properties
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Chen+ (in prep.)
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Adapted from Oguri+ (2018)

(M ​, z ​, c ​)200c cl 200c

Take into account:

Shape noise
Non-uniform survey depth and geometry
Uncorrelated Large-Scale Structure
Chance projections
Intrinsic alignment of source galaxies

THE MASS OBSERVABLE RELATION
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CHALLENGE

Similar strategies exist in
the literature for painting
into numerical simulations
Difficult to do millions of
injections for every
cosmology we sample
Existing approach:
- emulator
- analytic modeling
Are there other ways?

DES Peak Statistics

CFHT Peak Statistics
Kacprzak+ (2016)

Liu+ (2015) 19



NEW PARAMETRISATION OF
THE MASS OBSERVABLE RELATION

Adapted from Oguri+ (2018)

(M , z ​, c ​)200c cl 200cCosmology dependence in the conversion
physical properties -> lensing properties
Lensing properties -> observable
Not so sensitive to cosmology
Need to find parameters that can span the
space of all possible lensing profiles

20

Cosmology-dependent

Cosmology-independent

Parametrise by some
nuisance parameters



FULL PIPELINE

Adapted from Oguri+ (2018)

(M ​, z ​, c ​)WL cl WL
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Cosmology-dependent

Cosmology-independent
observable scaling relation

(pre computed)
Parametrise by some
nuisance parameters

(M ​, z ​)200c cl

⇒ ​(M , z ​p)
dMdz
dN

Modelling the deviation from

NFW-like halo (intrinsic uncertainties)

​

dO ​WL

dN

Data

Poisson Likelihood



MODELLING FOR INTRINSIC
UNCERTAINTIES

Deviation of real halo from an NFW
description (triaxiality, substructures...)
- Model through a scaling relation
between true mass and WL mass
- Two types of models with priors from
hydro simulation
Photo-z bias
- Two priors: Cosmic shear inferred and
clustering measurement
Scatter in the mass-concentration
relation
- Prior from Diemer & Joyce (2019)
Truncation of up-scattering low S/N
objects

Δ U(2, 4.5)
Up-scattering

Chiu+ (in prep.)
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BLINDED ANALYSIS
Catalogue level blinding through
shifting multiplicative bias
Collaboration-level blinding
All the analyses ran three times

Chiu+ (in prep.)
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CONSISTENCY CHECKS
Consistency across subset of
data
Consistency across different
selection threshold
Consistency across different
modelling frameworks
Consistency across different
numerical packages

Chiu+ (in prep.)
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CONSTRAINING POWER 
Blinded mean (contours have all
been randomly shifted)
Unblinded error bar
Degeneracy direction different
from cosmic shear
Compatible and complementary
constraining power

Chiu+ (in prep.) 25



SUMMARY
WL maps can be useful data product to study!
A new WL probe that sits between peak statistics and cluster
cosmology
Novel modelling framework that is comprehensive and
computationally efficient
May complement existing 2-pt probes through adding higher-
order information
Future: Combine with redshift obtained from optical cluster
catalogues to break degeneracy
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BACKUP SLIDES
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​ ​

=

​

dν
dN (ν∣p, ν ​)thres

dMdz[ ​V (z∣p) × P (ν∣M , z, p)Θ(ν > ν ​)]∬
dMdz

dn(M , z∣p)
thres

​ ​

P (ν∣M , z, p) =

=

d ​dθ ​P (ν∣M ​,θ ​)P ( ​,θ ​∣M , z, p)∬ M ​κ^ s κ s M ​κ^ s

d ​dθ ​P (ν∣ ​,θ ​)[P ( ​∣θ ​,M , z, p) × P (θ ​∣M , z, p)]∬ M ​κ^ s M ​κ^ s M ​κ^ s s

QUANTITATIVELY

: True observed lensing signal profile

: Estimated peak lensing signal

: Cluster characteristic angular size

M ​(θ)κ

​M̂κ

θ ​s
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QUANTITATIVELY

: True observed lensing signal profile

: Estimated peak lensing signal

: Cluster characteristic angular size

M ​(θ)κ

​M̂κ

θ ​s

​ ​

M ​(θ) ≈κ

=

2πρ ​r ​D ​⟨Σ ⟩ ​ U θ − x ⋅ θ ​ f (x)xdxs s
3

A
−2

c
−1 ∫

0

x ​ =θ ​/θ ​out: out S

( S)

​ ​M̂κ
​ U x ⋅ θ ​ f (x)xdx∫

0

x ​out

( S)

​ U θ − x ⋅ θ ​ f (x)xdx∫
0

x ​out

( S)

​ ​

P (ν∣M , z, p) =

=

d ​dθ ​P (ν∣M ​,θ ​)P ( ​,θ ​∣M , z, p)∬ M ​κ^ s κ s M ​κ^ s

d ​dθ ​P (ν∣ ​,θ ​)[P ( ​∣θ ​,M , z, p) × P (θ ​∣M , z, p)]∬ M ​κ^ s M ​κ^ s M ​κ^ s s
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RE-PARAMETRIZED SELECTION FUNCTION
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VALIDATION
Use one ~22 square degree field from HSC-Y1
Mock clusters sampled uniformly on the               space
Generate                              for various cosmological parameters
to validate our assumption

​–θ ​M̂κ s
P (ν ​∣ ​, θ ​)obs M̂κ s
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Vanilla

Exotic

​

h = 0.7, Ω ​ = 0.25, σ ​ = 0.8c 8

n ​ = 0.95, w ​ = −1.0s 0

​

h = 0.7, Ω ​ = 0.20, σ ​ = 0.65c 8

n ​ = 1.05, w ​ = −1.5s 0
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NUMBER COUNT
Three sets of cosmology
Compare to a mock observation
Compare to actual number count

Adapted from Oguri+ (2018) 34

Bocquet+ (2016)

​ ​

=

​

dν
dN (ν∣p, ν ​)thres

dMdz[ ​V (z∣p) × P (ν∣M , z, p)Θ(ν > ν ​)]∬
dMdz

dn(M , z∣p)
thres


