WEAK LENSING MASS MAPS AND COSMOLOGY FROM PEAK STATISTICS:

Results from the three-year shear catalogue of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP Y3)

Kai-Feng Chen (MIT) with I-Non Chiu (NCKU, Taiwan), Masamune Oguri (Chiba Univ., Japan) and the HSC collaboration

Mar 20th @ Les Diablerets (Supported by 🖵 Swiss National Science Foundation)

MAPS IN THE NEABY UNIVERSE? WEAK LENSING APERTURE MASS MAPS

- A map that measure the projected total mass within a certain aperture
- A compression of galaxy survey data
 - $2 \times N_{\text{gal}} \longrightarrow 2 \times N_{\text{pix}}$ (~ 30 galaxies per arcmin²)
- Contains both Gaussian and non-Gaussian information

COSMOLOGY WITH WEAK LENSING MASS MAPS

- WL surveys already have competitive constraints on S8 from power spectra/2pt correlation functions
- However, these constraints are in increasing tension with early-time measurement
- High-order statistics as an additional consistency test
 - Peak statistics
 - Higher moments in WL maps
 - 3pt-correlation/bispectra
 - Minkowski functionals
 - Density split statistics
 - Field-level inference

MID S/N PEAKS

- Peaks from galaxy/group scale halos + random fluctuation
- The peak function can be modelled analytically or numerically
- More sensitive to systematics such as boost and dilution effect, intrinsic alignment, etc.

HIGH S/N PEAKS

- Peaks from massive halos (clusters)
- Could obtain redshift info through cross-matching
- Complicated mass--observable relation and selection function to model

MID S/N PEAKS

- Peaks from galaxy/group scale halos + random fluctuation
- The peak function can be modelled analytically or numerically
- More sensitive to systematics such as boost and dilution effect, intrinsic alignment, etc.

HIGH S/N PEAKS

- Peaks from massive halos (clusters)
- Could obtain redshift info through cross-matching
- Complicated mass--observable relation and selection function to model

DATA: SUBARU HYPER SUPRIME-CAM

- HSC: 1.8 sq deg wide field camera on the 8.2m Subaru Telescope
- Collaboration between Japan, Taiwan and Princeton University
- Multi-band photometry with average i-band seeing at 0".59
- Year-3 data: 35 million raw galaxies over ~450 sq deg

WEAK LENSING MAPS IN HSC

- Convolve galaxies' shear with a truncated isothermal profile (Schneider 1996) to maximise lensing signals from galaxy clusters
- Use only high-z (z > 0.7) source galaxies to avoid dilutions from cluster member galaxies

GETTING THE OBSERVABLE

- Signal map (Aperture mass map)
- Noise map (Through randomise source galaxies shape)
- Masking
- Observable: Signal-to-Noise ratio map
- Peak Detection
- \Rightarrow 130 peaks with S/N > 4.7

WEAK LENSING MAPS IN HSC

WHERE DOES OUR SENSITIVITY COME FROM?

Similar to Cluster Cosmology!

of halos(M, z) # Halo density(M, z) × Volume(z)

WHY USE WL PEAKS INSTEAD?

Observable–Mass Relation

of halos(M, z) # Halo density(M, z) × Volume(z)

WHY USE WL PEAKS INSTEAD?

Observable–Mass Relation

WHY USE WL PEAKS INSTEAD?

Direct Observable–Mass Relation!

THE MASS OBSERVABLE RELATION

- 1. Draw realisations of redshift for source galaxies to create semi-real 3D box
- 2. Paint a mock NFW-like halo randomly on to the sky
- 3. Run mock observations to get the observable
- 4. Repeat million times
- 5. Obtain the selection function and mass-observable relation as a function of halo properties

THE MASS OBSERVABLE RELATION

Take into account:

CHALLENGE

- Similar strategies exist in the literature for painting into numerical simulations
- Difficult to do millions of injections for every cosmology we sample
- Existing approach:
 - emulator
 - analytic modeling
- Are there other ways?

MODELLING FOR INTRINSIC UNCERTAINTIES

- Deviation of real halo from an NFW description (triaxiality, substructures...)
 - Model through a scaling relation between true mass and WL mass
 - Two types of models with priors from hydro simulation
- Photo-z bias
 - Two priors: Cosmic shear inferred and clustering measurement
- Scatter in the mass-concentration relation
 - Prior from Diemer & Joyce (2019)
- Truncation of up-scattering low S/N objects

Table 1. The priors used in the modelling. The first column contains the names of the parameters, while the second columns present the priors.

Parameter	:	Prior
	Cosmolog	У
$\Omega_{ m m}$	$\mathcal{U}(0.1, 0.99)$	
$\Omega_{ m b}$	$\mathcal{U}(0.03, 0.07)$	
$\Omega_{ m k}$	Fixed to 0	
σ_8	$\mathcal{U}(0.45, 1.15)$	
$n_{\rm s}$	$\mathcal{U}(0.92, 1.0)$	
h	$\mathcal{U}(0.5, 0.9)$	
W	Fixed to -1 or $U(-2.5, -1/3)$	
	Weak-lensing ma	ass bias
	(Section 4.	5)
	M-z dependent bias	Constant bias
$A_{ m WL}$	$\mathcal{N}(0.903, 0.03^2)$	$\mathcal{N}(0.99, 0.05^2)$
$B_{\rm WL}$	$\mathcal{N}(-0.057, 0.022^2)$	Fixed to 0
$\gamma_{\rm WL}$	$\mathcal{N}(-0.474, 0.062^2)$	Fixed to 0
$\sigma_{ m WL}$	$\mathcal{N}(0.238, 0.037^2)$	
	Photo-z bia	as
	(Section 4.	6)
	Clustering-z	Cosmic-shear-informed
Δz	$N(0, 0.008^2)$	$\mathcal{N}(-0.13, 0.05^2)$
	Concentrati	on
σ_c	$N(0.3, 0.1^2)$	
	Up-scatteri	ng
Δ	U(2, 4.5)	
		Chiu+ (in pre

BLINDED ANALYSIS

- Catalogue level blinding through shifting multiplicative bias
- Collaboration-level blinding
- All the analyses ran three times

CONSISTENCY CHECKS

- Consistency across subset of data
- Consistency across different selection threshold
- Consistency across different modelling frameworks
- Consistency across different numerical packages

SUMMARY

- WL maps can be useful data product to study!
- A new WL probe that sits between peak statistics and cluster cosmology
- Novel modelling framework that is comprehensive and computationally efficient
- May complement existing 2-pt probes through adding higherorder information
- Future: Combine with redshift obtained from optical cluster catalogues to break degeneracy

BACKUP SLIDES

QUANTITATIVELY

$$\frac{dN(\nu|p,\nu_{thres})}{d\nu}$$

$$= \iint dM dz \left[\frac{dn(M,z|p)}{dM dz} V(z|p) \times P(\nu|M,z,p)\Theta(\nu > \nu_{thres}) \right]$$

$$\frac{P(\nu|M,z,p)}{dM dz} = \iint d\hat{M}_{\varkappa} d\theta_{s} P(\nu|M_{\varkappa},\theta_{s}) P(\hat{M}_{\varkappa},\theta_{s}|M,z,p)$$

$$= \iint d\hat{M}_{\varkappa} d\theta_{s} P(\nu|\hat{M}_{\varkappa},\theta_{s}) \left[P(\hat{M}_{\varkappa}|\theta_{s},M,z,p) \times P(\theta_{s}|M,z,p) \right]$$

 $M_{\varkappa}(\theta)$: True observed lensing signal profile

- $\hat{M}_{arkappa}$: Estimated peak lensing signal
 - θ_s : Cluster characteristic angular size

QUANTITATIVELY

 $P(\nu|M,z,p) = \iint d\hat{M}_{\varkappa} d\theta_s P(\nu|M_{\varkappa},\theta_s) P(\hat{M}_{\varkappa},\theta_s|M,z,p)$

 $= \iint d\hat{M}_{\varkappa} d\theta_{s} P(\nu | \hat{M}_{\varkappa}, \theta_{s}) [P(\hat{M}_{\varkappa} | \theta_{s}, M, z, p) \times P(\theta_{s} | M, z, p)]$

 $M_{lpha}(heta)$: True observed lensing signal profile

- $\hat{M}_{arkappa}$: Estimated peak lensing signal
 - θ_s : Cluster characteristic angular size

RE-PARAMETRIZED SELECTION FUNCTION

VALIDATION

- Use one ~22 square degree field from HSC-Y1
- Mock clusters sampled uniformly on the $\hat{M}_{\varkappa}-\theta_s$ space
- Generate $P(v_{obs}|\hat{M}_{\varkappa}, \theta_s)$ for various cosmological parameters to validate our assumption

Vanilla

$$h = 0.7, \ \Omega_c = 0.25, \ \sigma_8 = 0.8$$

 $n_s = 0.95, \ w_0 = -1.0$

Exotic

$$h = 0.7, \ \Omega_c = 0.20, \ \sigma_8 = 0.65$$

 $n_s = 1.05, \ w_0 = -1.5$

NUMBER COUNT

Three sets of cosmology

 $dN/d\nu$

