Swiss National Science Foundation

HERA Status Update

Robert Pascua on behalf of The HERA Collaboration Cosmology in the Alps 21 March 2024

164 Million 370 Million 1 Billion Time since the Big Bang in years

Time since the Big Bang in years

z ~ 1100 400,000

The Goal

Measure the statistics of fluctuations in the cosmologically-redshifted 21-cm signal.

The Goal

Measure the statistics of fluctuations in the cosmologically-redshifted 21-cm signal.

$$\langle \tilde{T}(\boldsymbol{k})\tilde{T}(\boldsymbol{k}')^*\rangle = (2\pi)^3 \delta^D(\boldsymbol{k}-\boldsymbol{k}')P(\boldsymbol{k})$$

What were the first stars and galaxies like?

What were the first stars and galaxies like?

How did Reionization unfold?

The Hydrogen Epoch of Reionization Array

supported by

RF

GORDON AND BETTY

Photo: Dara Storer

UNIVERSITY OF

Ŧ

UNIVERSITY of the WESTERN CAPE

BKO

SACHUSE

ATE

TAS

ARVARU

SKA AFRICA DUARE RECORE TRE ARRAY

I.OF .W

LVX···SIT

1861

F.CALIF

1868

NRAO

5

MANCHESTER 1824

rsity of Ma

Jhe Un

HERA Overview

Google Maps

HERA Overview

HERA Overview

Photos: Dara Storer Mosaicing: Josh Dillon

DeBoer+ 2017 doi: <u>10.1088/1538-3873/129/974/045001</u>

9

Improve instantaneous sensitivity through redundancy

DeBoer+ 2017 doi: <u>10.1088/1538-3873/129/974/045001</u>

Detect the 21-cm signal by avoiding the foregrounds in cosmological Fourier space Later, we'll look at HERA's latest upper limits, but how are things looking now?

The 2020-2021 season was the first real test of the Phase II system.

The 2020-2021 season was the first real test of the Phase II system.

The 2022-2023 season brought with it a big increase in the number of antennas.

The 2020-2021 season was the first real test of the Phase II system.

The 2022-2023 season brought with it a big increase in the number of antennas.

What can we expect?

2020-2021 Season

2020-2021 Season

• 24 nights of data

2020-2021 Season

• 24 nights of data

 Up to ~84 antennas with good data each night

2020-2021 Season Sensitivity Forecast (24 nights)

14

2022-2023 Season

2022-2023 Season

 Up to ~140 nights (~1300 hours) of data

2022-2023 Season

- Up to ~140 nights (~1300 hours) of data
- Up to ~140 antennas with good data each night

2022-2023 Season

- Up to ~140 nights (~1300 hours) of data
 - Up to ~140 antennas with good data each night

 Currently analyzing 14 nights of data

2022-2023 Season Sensitivity Forecast (14 nights)

16

z~9.93 $z \sim 7.36$ $z \sim 16.76$ 10^{4} 10³ Moderate 10² 10¹ 10° · $\Delta^{2}(k) [mK^{2}]$ 10^{4} Theory (EOS21) Sensitivity 10³ Optimistic 10² 10¹ 10⁰ 10^{-1} 10^{-1} 10⁰ 10^{-1} 10° 10^{-1} 10^{0} *k* [*h* Mpc⁻¹] → Smaller scales Larger scales ←

2022-2023 Season Sensitivity Forecast (full season)

Recent Challenges

Similar to other experiments, we see excess power at some *k* modes.

What's causing this?

We see excess structure in the visibilities...

...which we can reproduce with mutual coupling simulations. (Rath & **Pascua**+ 2024)

Challenges

We can mitigate these features with the help of fringe-rate filters.

We see evidence of mutual coupling in the data.

We see evidence of mutual coupling in the data.

We can mitigate it with fringe-rate filters.

We see evidence of mutual coupling in the data. We can mitigate it with fringe-rate filters. We've carefully studied the effects of these filters on power spectra. (Pascua+ 2024)

We see evidence of mutual coupling in the data. We can mitigate it with fringe-rate filters. We've carefully studied the effects of these filters on power spectra. (Pascua+ 2024)

 We're actively investigating improved mitigation
techniques.

Latest Results

(HERA 2023) doi:<u>10.3847/1538-4357/acaf50</u>

Data Description

HERA 2023 doi: <u>10.3847/1538-4357/acaf50</u>

Data Description

HERA 2023 doi: <u>10.3847/1538-4357/acaf50</u>

HERA 2023 doi: 10.3847/1538-4357/acaf50

24

Data Description

Upper Limits

Adapted from HERA 2022 HERA Public Data Release

With 94 nights of data from the Phase I instrument, we've set the most stringent constraints on the 21-cm power spectrum to-date

- MWA (Dillon+2015)
- MWA (Li+2019)
- MWA (Barry+2019)
- + MWA (Dillon+2014)
- MWA (Beardsley+2016)
- \star MWA (Trott+2020)
- ▼ PAPER (Kolopanis+2019)

- LOFAR (Patil+2017)
- LOFAR (Mertens+2020)
- GMRT (Paciga+2013)
- $\blacksquare HERA (HERA + 2023)$
- **—** Mesinger+2016 (k = 0.05)
- ----- Mesinger+2016 (k = 0.2)
- ----- Mesinger+2016 (k = 0.5)

Astrophysical Constraints

HERA 2023 doi: <u>10.3847/1538-4357/acaf50</u>

Astrophysical Constraints

Assuming the X-rays come from HMXBs in a single population of galaxies, X-rays were produced more efficiently in the past.

However, this constraint can be weakened by considering alternate heating mechanisms

We can say that the IGM *must* have been heated above the adiabatic cooling limit as early as redshift 10.4,

We can say that the IGM *must* have been heated above the adiabatic cooling limit as early as redshift 10.4,

and early galaxies were likely more efficient at producing X-rays than local galaxies.

We can say that the IGM *must* have been heated above the adiabatic cooling limit as early as redshift 10.4,

and early galaxies were likely more efficient at producing X-rays than local galaxies.

We're currently working on obtaining even more sensitive upper limits, so keep an eye out for what's next!

Summary

- HERA aims to probe CD/EoR through statistical detections of fluctuations in the cosmic 21-cm signal
- We build the requisite sensitivity through redundant averaging and stacking observations over nights
- We deal with foregrounds by targeting the EoR window in our delay spectrum estimates
- We've already placed interesting constraints on the astrophysics of reionization
- Upcoming analyses could potentially be sensitive enough to detect the 21-cm signal around z ~ 7
- Check out our paper register: <u>reionization.org/science/papers/</u>