SKACH

Square Kilometer Array Swiss project (SKACH) Winter meeting 2024 MID band 6 instrument EBB Status and current issues

Hes∙so

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland Neuchâtel, HES-SO/HE-Arc 23.1.2024 – D. Bovey SCHOOL OF ENGINEERING AND MANAGEMENT

HE IG

Mid-band 6: presentation outline

- Brief reminder of receiver structure
- Status of EBB work packages
 - Project management and documentation (WP2404)
 - System design and requirements (WP2410)
 - Front-end (WP2400)
 - Digitizer (WP2300)
- Next and concurrent actions
 - PDR Preliminary design review
 - Innosuisse project for digizer EM
 - RadioBlocks
- Miscellaneous subjects
 - Quantum limit and 15-50GHz Mid-band 6+
 - Evaluation of noise figure of a future EM
 - Surface quality in cavity filters
- Credits

Haute Ecole Spécialisée de Suisse occidentale University of Applied Sciences and Arts Western Switzerland

AND

MANAGEMENT

Block diagram: Mid-band 6 receiver EBB

EBB is ambient/connectorised, EM will be cryo (20K) and wave-guide based

- WP2404: Documentation:
 - **Project Management Plan (PMP)**
 - ☑ Design & Development Plan (DDP)
 - **Risk analysis**, in updating after SRR (will be including FPGA)
 - ☑ Template for the "Stories" for the "agile" Sprints
 - EMC control plan for EM
 - , Master test plan (MTP) in update for "field tests"
 - Proposal: EBB as H₂O vapour radio-meter
- WP2405: purchasing is a critical activity in the current times of shortage of electronic components, establishing a Long Lead Item list
- WP2406: Cameo and git
 - 🗹 setting up
 - 🔨 Maintenance

→ next milestone: Preliminary Design Review, March 2024

WP2410:

- System requirements review SRR
 - Noise model and analysis
 - **Electronics (Horn output to ADC)**
 - **Mathebra Rough model (excel file) for ambient temp EBB**
 - Fine model with frequency caracteristics of subsystems
 - Antenna noise
 - Sky and earth noise
 - Need geometrical model of full dish + imperfections
 - **Collaboration needed**
- Science requirements
 - For EBB

SCHOOL OF ENGINEERING AND MANAGEMENT

EBB Work breakdown: WP2400 front-end

M 10-40GHz QRFH Feed antenna (Acura Microwave)

- ☑ 2-40GHz splitter (Mini-Circuits or HEIG-VD design)
- 2-40GHz high ENR \square noise source (Noisecom)

- Noise source: selected
- - Circulators: Custom 15-25GHz are possible

Coaxial cables, adapters etc (Mini-Circuits et al.)

EBB Work breakdown: receiver 1/3

- WP2310: Second LNA needs a lot of gain (60..70dB)
 - Diramics MMIC selected (2x2)
 - Circuit architecture defined, although searching some means of decreasing the cost

- X-MW based build
- WP2320: fixed band-pass anti-alias filter for selecting the 2.5GHz sub-bands (1 in 4)
 - HEIG-VD design for adjustable filters for sub-bands ("almost" single design for 4 bands, same principle of operation as for variable filter WP2360 but screw-adjusted
 - Mechanical drawings completed
 - To be manufactured
 - \leq 4:1 sub-band switches defined and ordered \rightarrow delivered

X-Microwave prototyping Switching of BP filters large variable gain Diramics amplifiers

8x BPAF-V needed (single design) (Bandpass anti-alias filters – fixed)

EBB Work breakdown: receiver 3/3

WP2330 ADC:

- Approach changed
 - Instead of 1x dual ADC board developed for mfr, use 2x single ADC boards designed by ADC mfr
 - Decouples one project from the other (de-risking)
- HEIG-VD need to fabricate single-ADC board (long delays too..)

• WP2340: optical Links:

- Image: The study: some resources identified → DDP*
- ☑ Block diagram re-defined → DDP
- 🔼 Electronic design ongoing
- WP2350 FPGA packetizer:
 - FPGA eval board (Stratix 10 SX) operational
 - HDL code validated data from ADC out to 100GB ethernet at up to 11.5GSamples/s (margin, 92gb/s out)
 - M Design of control system through the fiber
- WP 2370 SYC system controller:
 - ☑ architectural decision → NOT USING processor core on FPGA
 - PC GUI will control FPGA
- WP2380-90 testing: on hold (HW platform =eval board is available, see above)

Test architecture design started

SKACH EI

EBB Work breakdown: receiver 2/3 (WP2360)

- Continue development of EBB
 - Goal: EBB operational 2024-06
 - Find where EBB used as H₂O radiometer could be useful
 - → IRAM collaboration (Radioblocks)
- Next EBB milestone: PDR 2024-04 (Preliminary design review)
 - Designs of all subsystems
 - Documentation notably:
 - Design, Test, Risk, Quality ("SKAO-compatible")
- Parallel/beyond project: Horizon Europe Radioblocks
 - Bandstop/notch filters for RFI rejection/attenuation "notch"
 - Collaboration with IRAM started,
 - specs confirmed: ambient temp, 17-24GHz, radiometer
 - Development of 7-cavity mechanically tuned bandpass filter
 - Development of cryo LNA? If there is interest
- Innosuisse project:
 - MB6+ digitizer EM for SKA with swiss SME
 - Proposal kick-off 02/2024
 - Project start 2024-08 (TBC)

- Is thermal noise energy >> photon energy? If not, impossible to sum thermal noise over a signal chain
- Boltzmann vs Planck
- Mainly about cold front-ends
- Simple "engineering-wise" calculation Boltzmann kTB >> Planck hf
- Ratio kTB/hf >9 (8dB)
- For various frequencies of interest and 20K temperature
- 1yJ=1yoctoJoule=10⁻²⁴ J

	•								
		1.4	4.6	8.5	15	25	50	230	850 f [GHz]
т [К]		0.92764	3.04796	5.6321	9.939	16.565	33.13	152.398	563.21 hf [yJ]
300	4.1E+03	36.5	31.3	28.7	26.2	24.0	21.0	14.3	8.7
77	1.1E+03	30.6	25.4	22.8	20.3	18.1	15.1	8.4	2.8
20	2.8E+02	24.7	19.6	16.9	14.4	12.2	9.2	2.6	-3.1
4	5.5E+01	17.7	12.6	9.9	7.4	5.2	2.2	-4.4	-10.1
0.01	1.4E-01	-8.3	-13.4	-16.1	-18.6	-20.8	-23.8	-30.4	-36.1
	kT [yJ]								

RJ coefficient in dB (limit: 8dB)

→ 50GHz is just at the defined limit for 20K operation

Ref: "Receiver Noise Temperature, the Quantum Noise Limit, and the Role of the Zero-Point Fluctuations* A. R. Kerr', M. J. Feldman 2 and S.-K. Pan, 1997

Noise temperature evaluation

- Mainly about front-end: noise contribution of digitizer is negligible
- Based on "above Rayleigh-Jeans" criteria: allows summation of noise temperatures in the signal chain
- EBB Elegant breadboard (project SKACH instrumentation)
 - 15-25GHz covered in 4 fixed sub-bands of 2.5GHz (15-17.5, 17.5-20GHz,...)
 - Coaxial cable → high loss
 - Ambient temperature front-end, with 100K LNA noise temperature
 - Use as vH₂0 radiometer
 - → Preliminary result: 160K noise temperature
- EM Engineering model and beyond (further project TBC)
 - 2x 2.5GHz simultaneous bands (but same as 1 band)
 - Waveguide-based → low loss
 - Several options:
 - non-simultaneous Band 6 (15 to 28GHz) and Band 7 (27 up to 50GHz, 40GHz at least)
 - Band 6+: 15 up to 50GHz (40GHz at least)

➔ Preliminary result: 40K noise temperature appears to be reachable with 10K LNA noise temperature (operating at 20K)

Surface quality in cavity filters: state of the art

- Where we start from:
 - Cavity filters (and many RF microwave devices) rely on surface currents in metal
 - The current is confined in a very shallow zone: depth of penetration (DoP) e.g. 0.45um @ 20GHz
 - Usual roughness of machined or plated surfaces is in the 10s of um, or worse
 - Base metal machined is brass, copper, aluminium, which oxidizes readily
 - → it is a "very hilly terrain"
 - → increases length of current path therefore resistance AND inductance
 - Oxidation "digs" into conductive metal, replacing metal with troughs of insulating metal oxide
 - even Silver Oxide is insulating as a semiconductor, 10⁴ to 10⁵ times less conductive than Ag metal
- Usual measures are:
 - Plate with inert metal (gold...) (Ag, Cu, Al adequate only when protected from oxidation)
 - Polish surfaces (not done very often as it is time-expensive and requires savoirfaire)

Surface quality in cavity filters: evolution

- What we are looking for:
 - Roughness << DoP</p>
 - Fortunately: "Mirror polish" (roughness below lambda/5 of visible light, i.e. 0.1um or less)
 - Result easy to see "by eye"
 - Polishing to be done by hand (for the moment) by specialised workers in watch-making industry
 - Methods on how to polish small cavities and parts
- Open questions
 - Impact of various machining technologies on surface roughness
 - Metal lay-up and electroplating process
 - Polishing process (hand process) and when to stop
 - Ensure preliminary choices allow future cost optimization

Note: Superconducting parts are a whole different story

All this wouldn't happen without:

- Mohammad Khalvati: EM simulations, crazy/creative ideas
- Mohammad Azadifar: EM Simulations
- Martin Loos: micromechanical design
- Pascal Coeudevez: Strategy, group leader, purchasing, micromechanical guru
- Gilbert Menth: Quality, documentation, planning/scheduling... and electronics
- Rostand Mitouassiwou: system thinking, test systems
- Christophe Donzelot: Microwave wizard, system thinking
- Yann Dolivo: Microwave wizard #2

And...

Stefan Koegl: Deadline enforcement

And...

• The REDS team (Alberto Dassatti and team):

High speed electronics and FPGA (see next presentation)

