SKACH Winter Meeting, Neuchâtel, 22-23 January 2024

## New constraints on HI cosmology and galaxy evolution at z<0.5 from SKA precursors

## **Francesco Sinigaglia**<sup>1,2</sup>

francesco.sinigaglia@unige.ch

<sup>1</sup>Département d'Astronomie, Université de Genève, Chemin Pegasi 51, 1290 Versoix, Switzerland <sup>2</sup>Institut für Astrophysik, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland











## **Scientific rationale**



Measure **HI in galaxies** at z>0.1 as a function of **internal** (M\* and SFR) and **external properties** (large-scale structure environment)

### HI spectral stacking

HI can be observed through the 21-cm emission line ... but the line is faint!



At *z*<0.1 direct detection is possible

At z>0.1 direct detection not possible: use **spectral stacking** 



Sinigaglia, Elson, Rodighiero, Vaccari (2022b), MNRAS, 514, 4205

## The MIGHTEE survey



• Redshift range: 0 < z < 0.5

Jarvis et al . (2016) Maddox et al. (2021)

Location of dishes in the Karoo

## HI scaling relations at z~0.37



- First detection of HI scaling relations of star-forming galaxies at z~0.37
- Need for efficient HI replenishment of HI over the last 4 Gyr
- Good agreement with cosmological simulations

Sinigaglia et al. (2022c), ApJL, 935, L13

## HI at z~0.37 in the LSS environment: outline

Same approach and techniques as before. 3 definitions of environment:

- galaxy overdensity field
- **centrals/satellites**, after running a Friends-of-Friends group finder
- **field, filament or knot** membership, based on the curvature tensor

Classification available from Darwish et al. (2015, 2017)

**2875 star-forming** galaxies with spec-z (COSMOS) (implemented detailed RFI masking)







### HI at z~0.37 in the LSS environment: spectra



## HI at z~0.37 in the LSS environment: results



## **Related and ongoing and future projects**

- Compute the  $\Omega_{HI}$  and derive the HIMF (in progress!)
- Follow-up environmental studies on 3D-reconstructed density fields (DESI BGS spec-z)
- Investigate implications of environmental effects on BAO peak position
- Extend the scaling relation framework to CHILES data (*Bianchetti et al., in prep*, incl. **FS**)
- Study the HI content of red dusty passive galaxies at z~0.37 (*Rodighiero et al., in prep. incl.* **FS**)
- Study the HI content of AGN and non-AGN host galaxies (Mangena et al., in prep., incl. FS)
- Study the HI content as a function of morphology (*Cook et al.*, incl. **FS**)
- Study the H<sub>2</sub> content in the same galaxies using ALMA data (A3COSMOS)
- Follow-up of the observational findings on cosmological hydro sims

# HI density parameter ( $\Omega_{HI}$ ) and mass function



Sinigaglia et al. (in prep.) (MIGHTEE-HI paper)

# Multitracer mocks for cosmological surveys



**Goal**: predict all cosmological tracers on the lightcone up to z~3.8 for SKA, DESI & Euclid

### Joint cosmological multi-tracer analysis

Generated of 2×200 lightcones @ Leonardo, CINECA (Italy)

#### **Tracers:**

- galaxies (BGS, ELGs, LRGs, QSO) (DESI effort)
- Lyman-alpha forest (DESI effort)
- HI galaxies & continuum, HI IM (SKACH?)
- CMB? GWs? More to come ...





U.S. Department of Energy Office of Science

#### Kitaura, Sinigaglia et al. (in prep.) + others

# Multitracer mocks for cosmological surveys



**Goal**: predict all cosmological tracers on the lightcone up to z~3.8 for SKA, DESI & Euclid

### Joint cosmological multi-tracer analysis

Generated of 2×200 lightcones @ Leonardo, CINECA (Italy)

#### Tracers:

- galaxies (BGS, ELGs, LRGs, QSO) (DESI effort)
- Lyman-alpha forest (DESI effort)
- HI galaxies & continuum, HI IM (SKACH?)
- CMB? GWs? More to come ...





U.S. Department of Energy Office of Science

#### Kitaura, Sinigaglia et al. (in prep.) + others

**Thanks!**