

SKACH

sciCORE

Universität Basel

Universität Zürich[™]

💫 CSCS

Compression for Extreme-Scale Computing: A Case Study of SPH-EXA's Data Analysis Architecture

Yiqing Zhu, Osman Seckin Simsek, Rubén Cabezón, Florina Ciorba University of Basel

SKACH Winter Meeting, January 22, 2024

Modeling, Simulation and Optimization through Interdisciplinary Co-Design

What is the role of I/O in supporting data analysis at extreme scale?

Performance profiling, tracing, Scientific visualization via snapshots and in-situ

Parallelization

[Adapted from: Schlesinger, S., "Terminology for Model Credibility," Simulation, Vol. 32, No. 3, 1979.]

Additional Physics

Nuclear reactions

Radiative cooling

Energy diffusion

Neutrino transport

General relativity

Magnetism

...

Radiation pressure

Extreme-Scale Data Analysis: Post-Hoc and In-Situ

SPH-EXA data analysis architecture: Post-hoc and in-situ

Post-hoc Analysis

- From simulation machine directly output to storage or visualization pipeline
 - High I/O
- Needs a powerful visualization machine

In-situ Analysis

- Runtime co-process the simulation data, then outputs to visualization pipeline
 - Can extract features in runtime
 - Low I/O
 - Low HW requirement (visualization can even be in-place)

Extreme-Scale Data Analysis: Post-Hoc and In-Situ

Challenges

- Reduce checkpointing time during simulation
- In-situ process of large datasets
- Parallel non-blocking I/O

Possible Solution: Compression

Data storage, loading, transfer...

SPH-EXA Checkpointing and Data Analysis

- Lossless compressors
 - <u>Zlib</u>
 - LZ
 - <u>LZ4</u>
 - LZ4HC

SPH-EXA Turbulence, 128 MPI ranks, 128 nodes on Piz Daint XC50

[Meteficha. (2023, December 2). Huffman coding. Wikipedia. https://en.wikipedia.org/wiki/Huffman_coding.]

Checkpoint Loading Time w.r.t. Compression Level

SPH-EXA Turbulence, 128 MPI ranks, 128 nodes on Piz Daint XC50

For most lossless compressors, decompression cost decreases with compression level

Lossless Compression Rate w.r.t. Compression Level

Turbulence, 128 MPI ranks, 128 nodes on Piz Daint

Visualization: Lossy Compression

Visualization: Lossy Compression

- Lossy Compressors
 - <u>SZ</u>
 - <u>ZFP</u>

Given uncompressed value f and reconstructed value g, it is guaranteed that $|f - g| \le accuracy$

[Lindstrom, P. (2014). Fixed-rate compressed floating-point arrays. *IEEE transactions on visualization and computer graphics*, 20(12), 2674-2683.]

Lossy Snapshot File Size w.r.t. Simulation scale (accuracy=10^-5)

SPH-EXA Turbulence, 128 MPI ranks, 128 nodes on Piz Daint XC50

Visualization: Lossy Compression

Lossy Compressors: Snapshot Writing Time vs. Number of MPI Ranks (system size = 1260^{3})

Snapshot Size Change Rate: $\frac{File Size_{256 Ranks}}{-1} - 1$ File Size₁₂₈ Ranks

Lossy Compressors: Snapshot Size Change Rate w.r.t. Number of MPI Ranks (System size = 1260^{3})

SPH-EXA Turbulence, 128 MPI ranks, 128 nodes on Piz Daint XC50

Visualization: Lossy Compression

SZ accu. = 10⁻⁴ (yellow) SZ accu. = 10⁻⁶ (blue)

> SPH-EXA Turbulence, system size 1000^3 at time t=18.0s. Colored by velocity, with different lossy compression accuracy

Zhu, Simsek, Cabezon, Ciorba

Visualization: Lossy Compression

SZ accu. = 10⁻⁴ (yellow) SZ accu. = 10⁻⁶ (blue)

> SPH-EXA Turbulence, system size 1000^3 at time t=18.0s. Colored by velocity, with different lossy compression accuracy

> > 17

Zhu, Simsek, Cabezon, Ciorba

Summary

- Exploration of compression for checkpointing
- Lossy compression for in-situ visualization
- Provide reference parameters for tuning compressors for extreme-scale simulations
 What if we have higher I/O bandwidth...?

In Progress

- Mixed-precision
- Larger scale visualization
- Verification of compression
- ...

Summary

- Exploration of compression for checkpointing
- Lossy compression for in-situ visualization
- Provide reference parameters for tuning compressors for extreme-scale simulations
 What if we have higher I/O bandwidth...?

In Progress

- Mixed-precision
- Larger scale visualization
- Verification of compression
- ...

Projects We Support

TGSF: The Role of Turbulence and Gravity in Star Formation, Unveiling the Sonic Scale with Smoothed Particle Hydrodynamics

For 10,079³ particles, relaxing the ICs already consumes 500'000 node hours on LUMI-G

Summary

- Exploration of compression for checkpointing
- Lossy compression for in-situ visualization
- Provide reference parameters for tuning compressors for extreme-scale simulations
 What if we have higher I/O bandwidth...?

In Progress

- Mixed-precision
- Larger scale visualization
- Verification of compression
- ...

Projects We Support

TGSF: The Role of Turbulence and Gravity in Star Formation, Unveiling the Sonic Scale with Smoothed Particle Hydrodynamics

Take away

We explore the potential of an efficient data analysis architecture to support extreme-scale simulations, such that storage, data loading and data transfer are not a bottleneck.

Basel

sciCORE

Universität Zürich[™]

Compression for Extreme-Scale Computing: A Case Study of SPH-EXA's Data Analysis Architecture

Yiqing Zhu, Osman Seckin Simsek, Rubén Cabezón, Florina Ciorba University of Basel

SKACH Winter Meeting, January 22, 2024

