

Computing Platforms and Infrastructure Program Update

Victor Holanda, CSCS Darren Reed, UZH January 22th, 2024

Reporting time

The Computing and Platforms contributions

Deployed dedicated Kubernetes infrastructure to SKACH

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform
- Following the SRCNet node requirements discussions

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform
- Following the SRCNet node requirements discussions
- Working on the Swiss SRC requirement definition

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform
- Following the SRCNet node requirements discussions
- Working on the Swiss SRC requirement definition
- Support on the Rucio+S3 prototyping with SKAO

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform
- Following the SRCNet node requirements discussions
- Working on the Swiss SRC requirement definition
- Support on the Rucio+S3 prototyping with SKAO
- Testing the SKAO AAAI prototype at CSCS

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform
- Following the SRCNet node requirements discussions
- Working on the Swiss SRC requirement definition
- Support on the Rucio+S3 prototyping with SKAO
- Testing the SKAO AAAI prototype at CSCS
- Participate as a facility partner in the SDC3 data challenge

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform
- Following the SRCNet node requirements discussions
- Working on the Swiss SRC requirement definition
- Support on the Rucio+S3 prototyping with SKAO
- Testing the SKAO AAAI prototype at CSCS
- Participate as a facility partner in the SDC3 data challenge
 - Congratulate the SKACH team 10th Place
 - Allocated 15'000 node hours to them (94% utilization)

- Deployed dedicated Kubernetes infrastructure to SKACH
 - Currently extending to include another development platform
- Following the SRCNet node requirements discussions
- Working on the Swiss SRC requirement definition
- Support on the Rucio+S3 prototyping with SKAO
- Testing the SKAO AAAI prototype at CSCS
- Participate as a facility partner in the SDC3 data challenge
 - Congratulate the SKACH team 10th Place
 - Allocated 15'000 node hours to them (94% utilization)
- Supporting the different synergies in collaboration with CTA

What have we work on?

The Computing and Platforms contributions

Supported the submission of Lucio's Project to LUMI-G using SPH-EXA

Computing Platforms and Infrastructure Program Update | 4 / 12

SKAL

An exciting future ahead of us

We will continue working on the 2023 commitments

An exciting future ahead of us

We will continue working on the 2023 commitments

An exciting future ahead of us

We will continue working on the 2023 commitments

What's new?

Work on getting vCluster running on Pawsey, Australia - MWA collaboration

An exciting future ahead of us

We will continue working on the 2023 commitments

- Work on getting vCluster running on Pawsey, Australia MWA collaboration
- Develop guidelines for Secure Software Development Life Cycle with SKAO

An exciting future ahead of us

We will continue working on the 2023 commitments

- Work on getting vCluster running on Pawsey, Australia MWA collaboration
- Develop guidelines for Secure Software Development Life Cycle with SKAO
- Work on the FirecREST integrated with JupyterHUB

An exciting future ahead of us

We will continue working on the 2023 commitments

- Work on getting vCluster running on Pawsey, Australia MWA collaboration
- Develop guidelines for Secure Software Development Life Cycle with SKAO
- Work on the FirecREST integrated with JupyterHUB
- Extend the Kubernetes offering with a development cluster

Moving to ALPS

When and how are we moving?

• The migration should start in April

Computing Platforms and Infrastructure Program Update | 7 / 12

- The migration should start in April
 - Expect a busy machine everyone will be migrating
 - Suggest you to write ReFrame tests for your applications and workflows

- The migration should start in April
 - Expect a busy machine everyone will be migrating
 - Suggest you to write ReFrame tests for your applications and workflows
- Single stage move

- The migration should start in April
 - Expect a busy machine everyone will be migrating
 - Suggest you to write ReFrame tests for your applications and workflows
- Single stage move
 - New (non-GPU) projects are going to eiger
 - Move hybrid to User Lab

- The migration should start in April
 - Expect a busy machine everyone will be migrating
 - Suggest you to write ReFrame tests for your applications and workflows
- Single stage move
 - New (non-GPU) projects are going to eiger
 - Move hybrid to User Lab
- Hardware will be different

- The migration should start in April
 - Expect a busy machine everyone will be migrating
 - Suggest you to write ReFrame tests for your applications and workflows
- Single stage move
 - New (non-GPU) projects are going to eiger
 - Move hybrid to User Lab
- Hardware will be different
 - ARM based (NVIDIA Grace CPU)
 - New NVIDIA GPUs (NVIDIA Hopper GPU)

- The migration should start in April
 - Expect a busy machine everyone will be migrating
 - Suggest you to write ReFrame tests for your applications and workflows
- Single stage move
 - New (non-GPU) projects are going to eiger
 - Move hybrid to User Lab
- Hardware will be different
 - ARM based (NVIDIA Grace CPU)
 - New NVIDIA GPUs (NVIDIA Hopper GPU)
- Software installation will have a different workflow

- The migration should start in April
 - Expect a busy machine everyone will be migrating
 - Suggest you to write ReFrame tests for your applications and workflows
- Single stage move
 - New (non-GPU) projects are going to eiger
 - Move hybrid to User Lab
- Hardware will be different
 - ARM based (NVIDIA Grace CPU)
 - New NVIDIA GPUs (NVIDIA Hopper GPU)
- Software installation will have a different workflow
 - Based on Spack and Stackinator
 - Uses squashfs images

SKACH Computing Platform

Same components as the User Lab at CSCS

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions
- We are currently identifying the gaps

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions
- We are currently identifying the gaps
- What does it change from the scientist point of view?

sка<mark>с</mark>н

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions
- We are currently identifying the gaps
- What does it change from the scientist point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - We don't foresee any differences

sка<mark>с</mark>н

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions
- We are currently identifying the gaps
- What does it change from the scientist point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - We don't foresee any differences
- What does it change from the code developer point of view?

SKA<mark>C</mark>H

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions
- We are currently identifying the gaps
- What does it change from the scientist point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - We don't foresee any differences
- What does it change from the code developer point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - There will be different architectures

sка<mark>с</mark>н

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions
- We are currently identifying the gaps
- What does it change from the scientist point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - We don't foresee any differences
- What does it change from the code developer point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - There will be different architectures
- What does it change from the system administrator point of view?

5KA<mark>C</mark>H

- Same components as the User Lab at CSCS
 - Look and feel to be similar to the largest portion of our system
 - Failover opportunities
 - Overall project costs reductions
- We are currently identifying the gaps
- What does it change from the scientist point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - We don't foresee any differences
- What does it change from the code developer point of view?
 - It will depend heavily on the actual implementation of SRC nodes
 - There will be different architectures
- What does it change from the system administrator point of view?
 - Client services will have to be deployed using Nomad

Gornergrat vCluster consistency - We are almost there

Focus on writing tests to speed up the deployment of vClusters

- Focus on writing tests to speed up the deployment of vClusters
- We have identifying some gaps

- Focus on writing tests to speed up the deployment of vClusters
- We have identifying some gaps
- Aiming to make the tests portable to be shared between SRCNet nodes

- Focus on writing tests to speed up the deployment of vClusters
- We have identifying some gaps
- Aiming to make the tests portable to be shared between SRCNet nodes
 - Focus on system testing and on user environment
 - Application testing will be next

- Focus on writing tests to speed up the deployment of vClusters
- We have identifying some gaps
- Aiming to make the tests portable to be shared between SRCNet nodes
 - Focus on system testing and on user environment
 - Application testing will be next
- The areas of the tests encompass:

- Focus on writing tests to speed up the deployment of vClusters
- We have identifying some gaps
- Aiming to make the tests portable to be shared between SRCNet nodes
 - Focus on system testing and on user environment
 - Application testing will be next
- The areas of the tests encompass:
 - OS checks
 - Individual components (e.g. SLURM, Filesystem, Sarus, FirecREST, etc)
 - Component integration
 - Workflow integration (e.g. K8s + vCluster)

Let's find the answers together

MWA collaboration

- MWA collaboration
 - What are the plans for integrating Swiss projects into MWA?

- MWA collaboration
 - What are the plans for integrating Swiss projects into MWA?
 - How do manage to get Karaboo integrated and running with MWA data?

- MWA collaboration
 - What are the plans for integrating Swiss projects into MWA?
 - How do manage to get Karaboo integrated and running with MWA data?
 - How do we integrate Bluebild into the pipeline?

- MWA collaboration
 - What are the plans for integrating Swiss projects into MWA?
 - How do manage to get Karaboo integrated and running with MWA data?
 - How do we integrate Bluebild into the pipeline?
 - What are the plans for leveraging the MWA data for SPH-EXA simulations?

ETH zürich

Thank you! Questions?

Accounting

Resource Consumption per Project 2023 Q1

Project	Group Leader	Node type	Quota [nh]	Used [nh]	Used [%]
sk08	Imayer	HYBRID	100'000	100'099	100.1 %
sk04	mstutz	HYBRID	5'000	299	6.0 %
sk02	dkorber	HYBRID	5'000	262	5.2 %
sk09	jpkneib	HYBRID	17'500	204	1.2 %
sk012	yrevaz	MULTICORE	5'000	151	3.0 %
sk10	etolley	HYBRID	5'000	89	1.8 %
sk05	lgehrig	HYBRID	5'000	45	0.9 %
sk014	mibianco	HYBRID	5'000	18	0.4 %
sk07	pllopiss	HYBRID	2'500	12	0.5 %
sk07	pllopiss	MULTICORE	2'500	11	0.4 %
sk015	phirling	HYBRID	5'000	2	0.0 %
sk012	yrevaz	HYBRID	5'000	0	0.0 %
sk01	hvictor	HYBRID	0	0	0.0 %
sk011	kshreyam	HYBRID	5'000	0	0.0 %
sk013	dpotter	MULTICORE	2'500	0	0.0 %
sk013	dpotter	HYBRID	2'500	0	0.0 %
sk016	fcabot	HYBRID	5'000	0	0.0 %
sk06	fschramk	MULTICORE	5'000	0	0.0 %
Total			182'500	101'192	55.4 %

Computing Platforms and Infrastructure Program Update | 12/12

Resource Consumption per Project 2023 Q2

Project	Group Leader	Node type	Quota [nh]	Used [nh]	Used [%]
sk08	lmayer	HYBRID	175'000	100'018	57.2 %
sk09	jpkneib	HYBRID	8'750	3'346	38.2 %
sk015	phirling	HYBRID	5'000	529	10.6 %
sk05	lgehrig	HYBRID	10'000	216	2.2 %
sk10	etolley	HYBRID	5'000	139	2.8 %
sk012	yrevaz	MULTICORE	5'000	100	2.0 %
sk014	mibianco	HYBRID	5'000	73	1.5 %
sk04	mstutz	HYBRID	10'000	51	0.5 %
sk09	jpkneib	MULTICORE	8'750	13	0.2 %
sk02	dkorber	HYBRID	5'000	1	0.0 %
sk016	fcabot	HYBRID	5'000	1	0.0 %
sk07	pllopiss	MULTICORE	2'500	0	0.0 %
sk01	hvictor	HYBRID	0	0	0.0 %
sk011	kshreyam	HYBRID	5'000	0	0.0 %
sk013	dpotter	MULTICORE	2'500	0	0.0 %
sk013	dpotter	HYBRID	2'500	0	0.0 %
sk06	fschramk	MULTICORE	5'000	0	0.0 %
sk07	pllopiss	HYBRID	2'500	0	0.0 %
Total			262'500	104'487	39.8 %

SKACH

Resource Consumption per Project 2023 Q3

Project	Group Leader	Node type	Quota [nh]	Used [nh]	Used [%]
sk08	Imayer	HYBRID	175'000	176'195	100.7 %
sk014	mibianco	HYBRID	10'000	7'970	79.7 %
sk05	lgehrig	HYBRID	10'000	7'378	73.8 %
sk015	phirling	HYBRID	5'000	149	3.0 %
sk04	mstutz	HYBRID	10'000	100	1.0 %
sk017	framunno	HYBRID	5'000	0	0.0 %
sk01	hvictor	HYBRID	0	0	0.0 %
sk012	yrevaz	MULTICORE	5'000	0	0.0 %
sk013	dpotter	MULTICORE	2'500	0	0.0 %
sk013	dpotter	HYBRID	2'500	0	0.0 %
sk016	fcabot	HYBRID	5'000	0	0.0 %
sk018	pdenzel	HYBRID	5'000	0	0.0 %
sk07	pllopiss	MULTICORE	2'500	0	0.0 %
sk07	pllopiss	HYBRID	2'500	0	0.0 %
sk10	etolley	HYBRID	5'000	0	0.0 %
Total			245'000	191'791	78.3 %

Resource Consumption per Project 2023 Q4

Project	Group Leader	Node type	Quota [nh]	Used [nh]	Used [%]
sk08	Imayer	HYBRID	175'000	176'150	100.7 %
sk014	mibianco	HYBRID	15'000	5'993	40.0 %
sk19	Imachado	HYBRID	5'000	2'531	50.6 %
sk018	pdenzel	HYBRID	5'000	1'806	36.1 %
sk05	lgehrig	HYBRID	15'000	1'450	9.7 %
sk015	phirling	HYBRID	5'000	128	2.6 %
sk04	mstutz	HYBRID	10'000	11	0.1 %
sk016	fcabot	HYBRID	5'000	0	0.0 %
sk01	hvictor	HYBRID	0	0	0.0 %
sk012	yrevaz	MULTICORE	5'000	0	0.0 %
sk013	dpotter	MULTICORE	2'500	0	0.0 %
sk013	dpotter	HYBRID	2'500	0	0.0 %
sk017	framunno	HYBRID	5'000	0	0.0 %
sk020	mbredber	HYBRID	5'000	0	0.0 %
sk021	msargent	HYBRID	5'000	0	0.0 %
sk07	pllopiss	MULTICORE	2'500	0	0.0 %
sk07	pllopiss	HYBRID	2'500	0	0.0 %
Total			265'000	188'068	71.0 %

Computing Platforms and Infrastructure Program Update | 12/12

