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Radio interferometry
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https://science.nrao.edu/facilities/alma/naasc-workshops/alma_dr/Braatz_Imaging2.pdf


How much, if any, of this process 
can leverage quantum computing? 

Studied in arXiv:2310.12084

https://science.nrao.edu/facilities/alma/naasc-workshops/alma_dr/Braatz_Imaging2.pdf
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Quantum Computing 101
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Orthonormal basis states:

Qubit:
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Quantum computing 101
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Spin-up in 
z-direction

Spin-down in 
z direction
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Quantum computing 101

5

Spin-up in 
z direction

Precess spin by applying 
magnetic field

Spin-up in 
x direction
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Quantum Computing 101
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Bloch sphereUnitary operators 
called ‘gates’ evolve 
the quantum state

Can also evolve 
multi-qubit systems
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Quantum Computing 101
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Chain together multiple gates 
into a quantum circuit

Quantum FT circuit
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Quantum data encoding
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Classical Image

Pixel values Ci are 32-bit floats 
Requires 32N^2 bits

C1 C2

C3 C4

Quantum binary encoding: simply map each bit 
(0 or 1) to a quit ( |0> or |1> ) without using any 
entanglement or superposition 
Requires 32N^2 qubits
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Quantum data encoding
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Quantum lattice: represent each pixel with a single qubit with superposition:

Requires only N^2 qubits, but compression comes at the cost of  additional 
quantum uncertainty

Original image 1 measurement 100 measurements
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Quantum data encoding
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Flexible Representation of Quantum Images 
(FRQI): encode positional information with 
with entangled qubits:

Requires only log(N^2)+1 qubits

Represent pixel coordinates as 
binary strings, for example:

Original image 1 measurement 10,000 measurements 1,000,000 measurements
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Quantum data encoding
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Quantum Probability Image Encoding 
(QPIE): encode positional information with 
with entangled qubits:

Requires only log(N^2) qubits!!

Represent pixel coordinates as 
binary strings, for example:

Original image 1 measurement 10,000 measurements 1,000,000 measurements
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Quantum data encoding
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Original image 1 measurement 10,000 measurements 1,000,000 measurements

Is this additional uncertainty worth it?

Quantum advantage is directly related to this compression factor in quantum computing. 

Classical computing Fourier transform on N2 pixels: O(N4) or O(N2 log (N2)) for FFT 

Quantum computing Fourier transform (QFT): 

N2 pixels represented by log(N2) qubits 

QFT requires circuit with O( log(N2)  log(N2) ) gates   => exponential algorithmic speedup 
However…
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Image reconstruction accuracy

13

Reconstruction accuracy of random images
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Image reconstruction accuracy
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Reconstruction accuracy of sparse images

Original
Quantum Lattice 

(100 measurements)
FRQI 

(100 measurements)
QPIE 

(100 measurements)

N2 qubits log(N2)+1 qubits log(N2) qubits
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Source reconstruction accuracy
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Toy source reconstruction pipeline

Try to fit 2D Gaussian profiles to these images, and measure reconstruction efficiency
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Source reconstruction accuracy
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SNR=10 SNR=100



Emma Tolley     SKACH Winter Meeting     22 January 2024

Quantum Advantage
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Quantum Advantage
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Total complexity is:

Optimal QPIE circuit depth:

For SNR=10 source reconstruction: 

Beats classical O(N4)  FT but not O(N2 log (N2)) FFT

For SNR=100 source reconstruction: 

Exponential speedup over FFT!

Complexity of QFT is:

However…
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Quantum Error
Real quantum computers are quite noisy, gates and circuits can be corrupted 
Assuming a uniform gate error rate of:
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Then a circuit with depth D will have a global failure rate of:

Thus 𝜖 or D need to be quite small…
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Quantum Error
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Can measure 𝜖 and D on the publicly available IBM quantum computers 

𝜖 is gate and hardware-dependent, but typical values on current 
hardware are 10-2 - 10-5 

Using a recursive initialization algorithm from Shende et al. (2006) to 
build the QPIE initialization circuit 

4x4 image initialized with 74 gates: ~15% failure rate 

256x256 image initialized with > 20,000 gates: ~100% failure rate
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Outlook
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Lower 𝜖: 

• Rapid developments in the field of quantum hardware, which may 
improve the quantum error situation 

• Quantum error correction can flag corrupted circuits 

Lower D: 

• QRAM: Store data instead of re-encoding it each time 

• Improved algorithms for data encoding (interesting proposal in Zhang 
et al (2021) for encoding a 1024×1024 image with ∼ 100 gates) 

• Can decompose image to run more, smaller circuits 
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Future directions

• Quantum error: should be mitigated by continuous developments in the 
field of QC 

• Quantum uncertainty: can only be mitigated by algorithmic developments 

• Quantum FFT? Quantum gridding/degridding? Quantum NU-FFT? 
Quantum deconvolution? 

• Similar study for time-domain/pulsar searches? 

• Quantum variational circuits & quantum machine learning
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