

Model and Exploratory Analysis of **HI Content in the Halo Occupancy Method**

for Cosmological & Astrophysics Inference with Density Estimatior Networks

Michele Bianco Patrick Hirling **EPFL Yves Revaz**

Francisco Villascusa-Navarro

SKACH meeting, Neuchâtel

Wed. 22 Jan. 2024

Presentation

- Model the HI content in galaxies for the intesity mapping:
 - Extend the Halo occupancy distribution (HOD) with Normalazing Flow networks.
 - Exploratory analysis of the $M_{halo} M_{HI}$ correlation
- Study the impact of the UV-background model in postreionization simulations:
 - Time-evolution of the HI density profile in mock halo

Post-Reionization with Intensity Mapping

Neutral hydrogen within massive galaxies is believed to be self-shielded against UV radiation from primordial sources at z < 5 (Villaescusa-Navarrao+ 2014).

- **Direct detection** of HI in galaxy via 21-cm emission line is complex.
- Observations of the **integrated 21-cm** line from **unresolved galaxies** over a wide sky area (Chang+ 2010).

Fast and computationally inexpensive model for the HI content in galaxies for post-EoR on large scales is to use: 10^{0} From the HI content in galaxies for the HI content in galaxies for the HI content in galaxies for post-EoR on large scales is to use:

 <u>Halo Occupation Distribution (HOD)</u> Follow power-law distribution Minimum halo mass Mass cut for radiative feedback

$$M_{HI}(M_h; z) = A(z)(M_h/M_{\rm cut})^{\alpha(z)}e^{-M_{\rm cut}(z)/M_h}$$

Villaescusa-Navarro+(2014)

Fast and computationally inexpensive model for the HI content in galaxies for post-EoR on large scales is to use: z=1.496

1010 <u>Halo Occupation Distribution (HOD)</u> 108 Follow power-law distribution 106 Minimum halo mass M_{HI} [M_o] 10^{4} Mass cut for radiative feedback 10² Model A: Modi+ (2019) 10⁰ $M_{HI}(M_h; z) = A(z)(M_h/M_{\rm cut})^{\alpha(z)}e^{-M_{\rm cut}(z)/M_h}$ Model C: Modi+ (2019) $\Delta_c = 180$, Padmanabhan+ (2017) 10-2 Villaescusa-Navarro+(2014) 205 Mpc/h 2500³ particles 10 1014 109 1010 1011 1012 1013 Mhalo [Mo]

Normalizing Flow Network (Bianco+ in prep.)

Normalizing flows are diffuse models that are based on the differentiable transformation of probability distributions:

Employed Masked Autoencoder for Density Estimation (MADE)

<u>Goal</u>: Employ high-resolution hydro-dynamical simulations to infer M_{halo} Vs M_{HI}

CAMELS Dataset for ML in Cosmology

Use CAMEL dataset to model the HI mass in halos for ML inpaint

- 10'000 simulations
- 25 Mpc/h
- Varying astrophysical & cosmological parameters
- Different initial conditions
- Halo catalog and HI in halo
- several snapshot at z = [0.8, 2.5]

 $\Omega_m = 0.403 \sigma_8 = 0.931$ $A_{SN1} = 0.335 A_{SN2} = 0.255 A_{AGN1} = 1.107 A_{AGN2} = 1.579$ 35 30 10° 25 [pdw] v 10⁻² G 15 10^{-4} 10 - 10-6 10 20 30 x [Mpc]

Model the statistical distribution of the $M_{halo} - M_{HI}$ correlation plot from high resolution hydrodinamic simulations (IllustrisTNG)

Model Galaxy HI content with ML (Bianco+ in prep.) 0.0035 $M_{\rm halo} = 10^8 \, M_{\odot}$ 0.0030 $M_{\rm halo}=10^9\,M_\odot$ $M_{\rm halo}=10^{10}\,M_\odot$ 0.0025 P(MHI | Mhalo) 0.0020 -0.0015 0.0010 0.0005 0.0000 10² 106 108 100 104 $M_{\rm HI} [M_{\odot}]$ Use Normalazing Flow network to describe the probability distribution for a given halo mass, M_{halo}

Exploratory Analysis of HI in Halo (Bianco+ in prep.)

Exploratory Analysis of HI in Halo (Bianco+ in prep.)

Halo can be devided in classes of based on their predominat feautres from hydro-dynamic simulations.

IM with large N-body (Bianco+ in prep.)

- <u>Ushuu simulation:</u> V~2 Gpc³, 14 snapshot between z=[0.8, 2.5], halo mass resolution: $M_{halo} \sim 10^8 M_{sun}$

uchuu

Simulation Name	Lbox Mpc/h	Npart	Mpart Msun/h	Snap	Halo	Tree	DM	Lens	Gal
Uchuu	2000	12800^3	3.27e8	List1	Yes	Yes	Yes	TBD	Soon
mini-Uchuu	400	2560^3	3.27e8	List2	Yes	Yes	Yes	-	Soon
micro-Uchuu	100	640^3	3.27e8	List3	Yes	Yes	Yes		Soon
Shin-Uchuu	140	6400 ³	8.97e5	List4	Yes	Yes	Yes		Soon

Create 21-cm image slice for intensity mapping observations for M_{HI} :

• FoV ~ 58 deg (z~0.7), frequency resolution = 390 kHz

Create lightcone from the Ushuu N-body halo catalog for given HI model:

- With redshift-space distortion based on halos velocity
- FoV ~ 58 deg (z~0.7), frequency resolution = 390 kHz

Study on the UV-Background Model

(Hirling, Bianco & Revaz in prep.)

- How physically motivated is the current UV-background model ?
- Can we improve the model with proper RT simulations ?

Mock halo sssume HI density profile:

$$\rho_{\rm HI}(r) = \frac{\rho_0}{r^{\alpha_\star}} \exp(-r_0/r)$$

Study on the UV-Background Model (Hirling, Bianco & Revaz in prep.)

Evolution of the neutral hydrogen density profile, ρ_{HI} , on mock halo

Study on the UV-Background Model (Hirling, Bianco & Revaz in prep.)

<u>Static case:</u> (Swift+pyC2Ray) no hydrodinamic only gas heating

<u>Dynamic case:</u> (Swift+Grakle+Rahmati) hydrodinamic with empiricla RT

Study on the UV-Background Model (Hirling, Bianco & Revaz in prep.)

Apply the RT based UV-background on actual hydro-dynamic simulations:

- How physically motivated is the current UV-background model ?
- Can we improve the model with proper RT simulations ?

Conclusion

- Model the galaxy's neutral hydrogen content with MADE Neural Network
 - Statistical distribution of the $M_{halo} M_{HI}$ correlation for aplication on large N-body simulation
 - Exploratory analysis of hydro-simulation can lead to a better understanding on how to model the $M_{halo} M_{HI}$ relation
- Use Radiative Transfer Simulation for a better UV-backgrond model for post-reionization simulations