Method and equipment for SKA-lo calibration SKACH Consortium Winter Meeting Alexandra Andersson, Joseph Moershell Jan 23, 2024

SKACH

Outline

- 1. Calibration requirements
- 2. State-of-the-art of calibration methods
- 3. Our proposal : benefits and challenges
- 4. System design sketch
- 5. Next steps

SKACH

Calibration requirements

Radio antenna calibration

- Determine gain, phase and delay as a function of direction of arrival and of frequency of the incident electromagnetic wave
- For a dual polarization receiving antenna, determine the above for 2 different polarization outputs, as well as direction and frequency dependent polarization cross-coupling between the outputs

Signal chain block diagram [Report on the Station Calibration Task, SKA-TEL-SKO-0001088-02]

Telescope array calibration

- Calibrate the station beam, i.e. the digital delay and sum of antennae signals, as a function of direction of arrival
- In addition to individual antenna calibration, influence of antenna positioning and orientation, mutual coupling between antennae → Embedded Element Patterns (EEP)

[SKA-TEL-SKO-0001088-02]

SKACH

Calibration methods

Calibration with low-flying UAV based source

- Minimum Fraunhofer distance of station far field from antenna plane = $2D^2/\lambda$, D = 38m station diameter, λ_{min} = 0.86m (350MHz) \rightarrow 3360m
- Since this cannot be realized with multicopters, only single element caracterizations, where the distance for far field condition e.g. >20 λ , λ_{max} = 6m (50MHz) \rightarrow 120m

Embedded Element Patterns

- These results are simulated.
- Each line represents a different position in the array.
- E and H planes are vertical with respect to ground, and to each other.
- Black circle indicates intended field of view of ±45°.

Self holographic station beam calibration

Computed station beam [SKA-TEL-SKO-0001075-02]

- Self holography is a method to compute antennae gains by correlation between the measured beam and an ideal reference beam.
- To be able to generate a gain map, the measured beam must be scanned through the field of view.
- Set a goal for experimental scans: e.g. ±60° from zenith.

SKACH

What we propose

Calibration by high-flying plane – the what

The Why

Advantages

- Observations are done with station antenna array, not with single independent receivers → calibration of array needed
- Straight wavefront in far field → calculation of element phases and delays can be done
- Mutual coupling effects inside the station array of antennae can be determined
- Non straight wavefronts due to atmospheric distortion, in particular close to antennae and in the ionosphere → such effects might be (partially) detected with a high flying calibrator

Challenges

- Environmental conditions at high altitudes are severe: at 30km, -60°C and 10mbar pressure (0.01atm)
- Energy for calibrator to be stored in batteries
- Calibration is with respect to field of view and frequency range: trade-off needed in the design of the calibrator path and flight duration
- Calibrator path, orientation, frequency and power must be recorded during flight
- Avoid RFI from UAV

Solarstratos Solar power stratospheric powered flight

SKACH

System design sketch

Flight path – constant frequency operation

- Because of the continuous loss of altitude, and impossibility to fly sharp curves with reorienting the antenna, the path must be smooth.
- Circulating on a constant diameter maps into a spiral in E and H planes.
- Circle diameter such that 30° elevation from ground at 3360m distance, i.e rt(3)·3360m = 5820m
- At gliding ratio of 11, this allows for 16 turns between 30km and 3.36km.
- Table of viewing angles at the beginning of each circle:

h[km]	33.0	28.3	26.7	25.0	23.4	21.7	20.0	18.4	16.7	15.1	13.4	11.7	10.1	8.4	6.8	5.1
α [°]	5.54	5.86	6.22	6.63	7.10	7.64	8.26	9.00	9.87	10.9	12.3	13.9	16.1	19.1	23.3	29.7

- To cope with non-linear angle distribution, conical scan to be designed, with increasing diameter
- But this will reduce the number of turns, e.g. to 10.

Flight path – variable frequency operation

- To limit the number of flights, vary frequency during flight
- Frequency chirping is electronic = fast, but to keep antenna pattern simple, mechanical dipole length variation needed
- 2 frequency scan periods (up and down cycle) per flight circle would be a compromise solution
- With 14min per circle, ca. 7min per frequency scan, i.e. 3.5min per frequency chirp
- Another alternative: ramp up the frequency from 50MHz to 350Mhz while dropping from 30km initial altitude. Requires more complex flight path.
- Assumption : 10 frequency steps of 30MHz each. For each step design a flight path that occupies optimally the angle space.

What kind of power would we like to receive?

Antenna gain $\sim 7 dB$ (log- periodic antenna typical gain)									
LNA (from SKA-TEL-	SKO-0001099, 2020-	04-07)							
Parameter	Typical								
Frequency range	50 – 350 MHz								
Gain	$\geq 40 \ dB$								
P1dB	-30 dBm								

 $-88 \ dBm \rightarrow -93 \ dBm$ (with antenna gain 5 dB)

SKA-TEL-SKO-0001075-02 (DesignBaselineDescription)

Table 6-14: Linearity parameters, referred to the RX chain output [RD1869].

Total gain (100 MHz)	84	dB
Output level (operating, typical)	-2.7	dBm
OIP2	49	dBm
OIP3	33	dBm
1 dB compression point	18	dBm

 $-84 \ dBm \rightarrow -93 \ dBm$ (with antenna gain 5 dB)

What would we need to transmit?

 $\frac{P_r}{P_t} = 20 \log_{10} \left(\frac{\lambda}{4\pi d} \right) = 20 \log_{10} \left(\frac{c}{4\pi df} \right) \rightarrow -96 \ dB \ @ 50 \ MHz, 30 \ km$

Can just keep power constant and augment frequency while descending to keep losses constant

 $-88 \, dBm \rightarrow -93 \, dBm$ (with antenna gain 5 dB)

Transmission power around 3 dBm

Constant frequency flight				Variable frequency flight					
Frequency	Altitude	Attenuation	Trans. Power	Frequency	Altitude	Attenuation	Trans. Power		
350 <i>MHz</i>	30 km	−113 dB	20 <i>dB</i>	50 <i>MHz</i>	30 km	-96 dB	3 <i>dB</i>		
350 <i>MHz</i>	15 km	-107 dB	14 <i>dB</i>	100 <i>MHz</i>	15 km	-96 dB	3 <i>dB</i>		
350 <i>MHz</i>	7.5 km	-101 <i>dB</i>	8 <i>dB</i>	200 <i>MHz</i>	7.5 <i>km</i>	-96 dB	3 <i>dB</i>		
350 <i>MHz</i>	4.3 km	-96 dB	3 <i>dB</i>	350 <i>MHz</i>	4.3 km	-96 dB	3 <i>dB</i>		

Drone payload and transmission antenna

100 mm

Calibration frequencies $f = 50 MHz \rightarrow 350 MHz$ $\lambda = 6 m \rightarrow 0.86 m$

I would like a small, light-weight, omnidirectional, wideband antenna with decent radiation efficiency, please.

too big

Avoid the mess

500 mm

Make a nice, resonant dipole

20

How about a short dipole?

- Length: 0.43 m, resonant at 350 MHz
- Extremely large reactance and small resistance
- Tuning elements hard to implement
- Large losses in inductance

21

Tuneable dipole in the wings

- Use a wire guided by a rigid nonconductive tube to adjust length with a stepper motor.
- Can transmit any frequency that we can length-adjust for with a near-constant impedance

Frequency generator/Amplifier

- Difficult to find one that fit with size and power constraints
- Example right: 18 W
- Design from VCO/PLL/DDS/external amp components
 - Must be filtered for harmonic content
 - Amplifier power consumption : 0.5 W 3 W
 - Frequency generation : ~ 1W
 - Must be paired with a power measurement chain

Transmission power measurement – RF chain

Σπ

= &

Source of errors:

Directional couplers and output reflection of amplifier (presumed 20 dB) and reflection of antenna.

Transmission power measurment error due to coupler directivity and amplifier Return Loss **Coupler Directivity Coupler Directivity** Transmission power mesurement error [%] 20 dB 20 dB 25 dB 25 dB 20 30dB 30dB -35dB 35dB 40dB 40dB 15 Absolute power error Absolute power error 10 5 0 0 5 10 15 20 25 30 5 10 15 20 25 30 Load reflection at best tuning, [dB] Load reflection at best tuning, [dB]

Transmission power measurement – signal acquisition

- Direct sampling, possibly under sampling system or synchronous sampled
 - Can do digital filtering to ignore harmonics
 - Fast sampling ADC power consumption $\sim 0.7 \text{ W}$
- Power detection via RF power diode
 - Measures total power including harmonics
 - Detector diode power consumption ~0.5 W

Battery and power supply

- Estimated power of RF generation and measurement chain : 5 to 10 W
- For a 4-hour flight we would need something like ~40 to 80 Wh battery (assuming half usable capacity)
- The standard 18650 type batteries exist in $-20 \degree C 60 \degree C$ discharge range and has about a 10Wh capacity and a 50 g weight.
- Other options exist than can operate down to $-40 \,^{\circ}C$ with similar weight/power profiles. (LiFePO4, Lithium Polymer)
- -60 °C operational temperature does not seem to exist, requiring some minimum thermal stabilisation

Thermal stabilisation of drone payload

- Top of flight is at -60 C. This is not a battery friendly temperature, ground temperature could be +40 C
- The payload would likely have to be both cooled and heated. We estimate 5 to 10 W system consumption.
- Some kind of variable heatsinking concept is needed
- Potential solution: Switchable water-cooling circuit as a function of temperature
- Switchable heat pipes are an interesting idea, but they seem to be a research concept and not available as commercial components

Next steps

How to go ahead

• Pre-study to define

- Basic specifications of RF generation and measurement system
- Flight path and associated distribution of calibration points in calibration space (angles and frequency)
- Calibration algorithms
- Payload architecture
- Heating and cooling concept
- Prototype design, manufacture, assembly, integration and test (in CH)
- Flight hardware MAIT
- Test campaign on-site and evaluation

Basic specification needed to start RF and measurement system design

- Received signal strength at ground?
- Amplitude stability required of the received signal?
- Absolute emitted power measure precision?
- Relative power measure resolution?
- Permissible harmonic content in emitted signal?
- Frequency stability, absolute and relative?
- Phase noise?

Questions?

alexandra.andersson@hevs.ch joseph.moerschell@hevs.ch HES-SO Valais-Wallis Industrie 23 1950 Sion