

MURCHISON WIDEFIELD ARRAY (MWA) TELESCOPE

- MWA is a radio telescope composed of 4,096 antennas tuned to receive signals from the sky between 70 and 300MHz => **low-frequency**
- MWA is the only low frequency SKA
 Precursor*
 - *pathfinder technology on SKA site
- Started in 2013, currently in Phase III (2021-2030)

MWA PHASE III

- New MWAX correlator deployed and operational
- 256 tiles (16 antennas each), all correlated, supported by new receivers
- "Design features" of existing receivers fixed, much better for the EoR
- Twice the sensitivity, four times the data, even better uv coverage, more flexible modes and parallel paths for signal processing as MWAX evolves.
- \$7.7M AUD of NCRIS operations announced this year, Plus \$4M AUD from MWA partners for Phase III (now including Switzerland!)

MWA SCIENCE WORKING GROUPS

Slide credit: Chris Riseley

MWA ARCHIVE

The Epoch of Reionization (EoR)

- Key science project for SKA-Low
- MWA view of the Southern Sky used to determine observing fields of SKA-Low
- Also develop methods & expertise for running an EoR experiment

Pre-selection of the Candidate Fields for Deep Imaging of the EoR with SKA1-Low - Qian (Cathie) Zheng (SHAO)

S<6 Jy, 40 square degrees

S<3 Jy, 20 square degrees

Pulsars & transients

- Pulsar survey of southern sky: input data for SKA
- Discovery of new pulsars
- Ultra-long period magnetars
- Value of the archive (discovering new signals in archived data: https://www.nature.com/articles/s41586-023-06202-5)

Sky Catalogs

- GLEAM, GLEAM-X and LoBES will be primary catalogues for initial SKA-Low calibration
- POGS (GLEAM polarization catalogue): First all-sky low-frequency polarimetry survey, Influential in SWG planning for SKA-Low

Cosmic magnetism & Cosmic Web

- Role in first statistical detection of cosmic web filaments (arXiv: 2101.09331)
- Value of low frequency surveys, publicly available data, large scale

Computing & Data Mark Gray and Ugo Varetto 9PB Ceph storage 3000+ vCores 200,000+ Cores, 700+ GPUs, 100Gbps **Setonix Supercomputer ASKAP Ingest** Nimbus (Cloud) Garrawarla 100 Gbps 10 Gbps 10 Gbps 100 Gbps 100 Gbps S3 Interface 100Gbps Fibre Channel 100 Gbps **External Firewall**

> Advanced architecture

SWITZERLAND & MWA

- February 2023: Formed a preliminary consortium of interested Swiss researchers
- March 2023: presented our membership application to the MWA board, which was approved unanimously
- December 2023: Deed of accession signed by all parties, Switzerland officially joins MWA
- Working on drafting formal collaboration agreement for Swiss consortium: EPFL, ETHZ, CSCS, FHNW, ISSI, UniBas, UZH, ZHAW
 - University representatives are the same as SKACH board members
 - Emma Tolley is the MWA board member for Switzerland
- MWA Project meeting in Switzerland August 28-30
 - Will include some hands-on data analysis session from other MWA members

MWA MEMBERSHIP

- MWA members get access to the wiki, can join science working groups, submit observing proposals, etc
- If you would like to be a member, talk to your SKACH board rep!
- For **onboarding**, check out the <u>MWA FAQ</u> and the last <u>MWA project meeting slides</u>
- How to get involved now? Join one of the science working groups

Current Swiss MWA membership list

Emma Tolley	EPFL
Jean-Paul Kneib	EPFL
Mark Sargent	ISSI
Alexandre Refregier	ETHZ
Michele Bianco	ETHZ
Victor Holanda	CSCS
Lucio Mayer	UZH
André Csillaghy	FHNW
Elena Gavagan	ZHAW
Florina Ciorba	UniBas
Aurel Schneider	UZH