SKACH

Non-Gaussian Simulation of Post-Reionization Cosmological Neutral Hydrogen based on a Halo Model Approach

Pascal Hitz ETHZ Cosmology Group[†]

Swiss SKA Days 04.09.2024

⁺ Alexandre Refregier, Pascale Berner, Devin Crichton, John Hennig, Luis Machado, Joël Mayor, Jennifer Studer

- Fast and large volume simulations of neutral hydrogen (HI) distribution
- Test instrument simulation and analysis pipeline to measure the HI emission

PINOCCHIO: Dark Matter Halo Simulation

- Monaco et al. (2002, 2013), Taffoni et al. (2002), Munari et al. (2017)
- Lagrangian Perturbation Theory
- Collapsed points grouped into halos, hierarchical growth
- Catalog of dark matter halos
- Much faster than N-body

Current Setting of DM Simulations

- 1 Gpc/h box size (500 Mpc/h)
- 6700³ simulation particles (2048³)
- \geq 10 particles per halo $\leftrightarrow \geq$ 4.3 × 10⁹ M_☉ $\frac{(1.89 \times 10^{10} \text{ M}_{\odot})}{(1.89 \times 10^{10} \text{ M}_{\odot})}$
- Lightcone settings:
 - − Frequency range: 700 800 MHz \leftrightarrow Redshift 0.77 1.03
 - Declinations between -15° and -35° (Half-Sky)
- Ran on Piz Daint with MPI parallelization
 - 2400 nodes with 12 cores each (39 nodes with in total 1032 cores on Euler Cluster of ETHZ)
 - 150 TB RAM, 40'000 CPU h runtime (2.75 TB RAM, 332 CPU h runtime)

 \rightarrow 1.5 – 3% HI mass missing

(20 – 30%)

Halo Model for Cosmological HI

HI Mass Loss

- More massive halos contain more HI
- But: Many more small halos than large ones
- ➔ Important not to neglect small halos.
- 1.5 3% loss over considered redshift range.

f = 836.0 MHz / z = 0.710⁰ 10^{-1} $\nabla_{\rm H}^{0,\rm H}$ 10⁻² $M_{\rm H}^{0,\rm H}$ 10⁻³ $M_{\rm H}^{0,\rm H}$ 10⁻³ 10⁻⁴ 10⁻⁵ 10^{-5} 10^{-6} 10^{-2} 10^{-4} $\begin{bmatrix} 10^{-6} & 10^{-6} \end{bmatrix}$ $W^{H} M = 10^{-8}$ $10^{-10} = 10^{-10}$ 10^{-6} 10^{-12} $M_{\rm min} = 4.3e + 09 \ M_{\odot}$, (1Gpc/h, 6700³) 10^{-14} 10⁸ 10^{10} 10^{11} 10^{12} 10^{13} 10^{14} 10^{15} 10^{9} $M [M_{\odot}]$

Brightness Temperature Maps

HI Angular Power Spectrum

HI Angular Power Spectrum

HI Power Spectrum

ETH zürich

HI Angular Power Spectrum

Instrument Simulation and Analysis Pipeline

Recovered HI Angular Power Spectrum

Summary

- Simulation pipeline of HI maps for intensity mapping
- Apply it to HIRAX and SKA/MeerKAT
- Theoretical predictions of power spectrum
- Future developments:
 - Vary cosmology and astrophysics (HI-Halo mass relation)
 - Consider foregrounds, noise and RSD
 - Cross-correlations with other probes

Hitz et al. (in prep.)

PyCosmo HI Halo Model

• Fundamental assumption: All matter in the universe is arranged in halos of different sizes and masses

$$P_{\rm HI}(k) = P_{\rm 1h,HI}(k) + P_{\rm 2h,HI}(k)$$

$$\rightarrow P_{\rm 1h,HI} = \frac{1}{\bar{\rho}_{\rm HI}^2} \int dM \frac{dn(M,z)}{dM} M_{\rm HI}^2(M) |u_{\rm HI}(k|M)|^2$$

$$\rightarrow P_{\rm 2h,HI} = P_{\rm lin}(k) \left[\frac{1}{\bar{\rho}_{\rm HI}} \int dM \frac{dn(M,z)}{dM} M_{\rm HI}(M) b(M) |u_{\rm HI}(k|M)| \right]$$