A novel observable expected in lensed FRBs

S. Goureesankar,¹ Prasenjit Saha,² Calvin Leung,³ Olaf Wucknitz⁴

¹ IISER Thiruvananthapuram, ² University of Zurich, ³ UC Berkeley, ⁴ MPIfR

 Q0957+561
 PG1115+080

 HE1104-1805
 RXJ1131-1231

 Figures from arxiv:2401.04165

RXJ0911+0551 Q2237+030

 Q0957+561
 PG1115+080

 HE1104-1805
 RXJ1131-1231

 Figures from arxiv:2401.04165

RXJ0911+0551 Q2237+030

Micro-Lensing by Stars within (macro-)Lensing by Galaxies

$$\sum_{\nu} S(\nu) \exp(2\pi\nu i t) \xrightarrow{\text{lensing}} \sum_{\nu} A(\nu) S(\nu) \exp(2\pi\nu i t)$$
$$A(\nu) = \sum_{k} \exp(2\pi\nu i \tau_{k}) |H(\tau_{k})|^{-1/2} \times \begin{cases} 1 \text{ for minima} \\ i \text{ for saddle points} \\ -1 \text{ for maxima} \end{cases}$$

 τ_k is the time delay of the *k*-th micro-image $H(\tau_k)$ is the Hessian (curvature) of the τ surface.

$$\sum_{\nu} S(\nu) \exp(2\pi\nu i t) \xrightarrow{\text{lensing}} \sum_{\nu} A(\nu) S(\nu) \exp(2\pi\nu i t)$$
$$A(\nu) = \sum_{k} \exp(2\pi\nu i \tau_{k}) |H(\tau_{k})|^{-1/2} \times \begin{cases} 1 \text{ for minima} \\ i \text{ for saddle points} \\ -1 \text{ for maxima} \end{cases}$$

 τ_k is the time delay of the *k*-th micro-image $H(\tau_k)$ is the Hessian (curvature) of the τ surface.

Microlensing is imprinted in auto-correlation of the lensed electric field.

The observable

Complication: the Interstellar Medium

Electron density (turbulent spatial spectrum $R^{-11/3}$)

contributes to τ as ν^{-2}

Follows Armstrong et al. 1995ApJ...443..209A

7

Summary

The well-known:

- One in $\sim 10^{-3}$ FRBs will be lensed by galaxies (clusters) to multiple images on the arcsec (arcmin) scales, with delays of weeks (years).
- Each image will be further microlensed collectively by stars into micro-images on micro-arcsecond scales, with delays on the microsecond scale.
- If they could be detected, potential applications range from stellar mass function to cosmological parameters.

Summary

The well-known:

- One in $\sim 10^{-3}$ FRBs will be lensed by galaxies (clusters) to multiple images on the arcsec (arcmin) scales, with delays of weeks (years).
- Each image will be further microlensed collectively by stars into micro-images on micro-arcsecond scales, with delays on the microsecond scale.
- If they could be detected, potential applications range from stellar mass function to cosmological parameters.

The new:

- Micro-images of will produce a distinctive signature in the auto-correlation of the FRB signal.
- Plasma scattering by the ISM is the likely limitation.