Probing the ACDM Universe and Beyond with Present and Future 21cm Intensity Mapping Surveys

SWISS SKA DAYS 2024 4 September



#### Maria Berti Postdoc - Université de Genève



## Hydrogen Through Cosmic Time

#### Recombination $z \sim 1100$

# CMB photons

#### Cosmic Dawn $z \sim 20$

M. Berti 2



Galaxy evolution *z* < 6



## 21cm Line Intensity Mapping

Credit: NASA / LAMBDA Archive Team



 $\nu_{em} = 1420 \text{Mhz}$ 

M. Berti

high spectral resolution



## **Open Questions**

Credit: Illustris

#### Baryons Neutral Hydrogen (HI)

#### What is Dark Matter?



Does the CMB lensing anomaly hide not understood systematics?

Are the Hubble and the growth tension an indication of new physics?





#### Overview

#### The 21cm observable

- Theoretical modelling
- Forecasted data sets
- Numerical methods

#### References

M. Berti, M. Spinelli, B. S. Haridasu, M. Viel, A. Silvestri, JCAP 01.01 (2022), ArXiv:<u>2109.03256</u>.
M. Berti, M. Spinelli, M. Viel, Mon. Not. Roy. Astron. Soc. 521.3 (2023), ArXiv:<u>2209.07595</u>.

#### Probing the ACDM Universe

Cosmological parameters constraints
21cm combined with CMB data

Probing the beyond ^ ACDM Universe Constraints on Dark Energy

Constraints on the neutrino mass



## The 21cm Observable

## Theoretical 21cm Linear Power Spectrum



<sup>1</sup> Kaiser (1987), Bacon et al. (2019)

We model it as<sup>1</sup>

$$P_{21}(z,k,\mu) = \bar{T}_{b}^{2}(z) \left[ b_{\rm HI}(z) + f(z) \mu^{2} \right]^{2} P_{\rm m}(z,k)$$

- where
  - $\bar{T}_{h}^{2}(z)$  is the mean brightness temperature
  - $b_{\rm HI}(z)$  is the HI bias
  - f(z) is the growth rate
  - $\mu = \hat{k} \cdot \hat{z}$
  - $P_{\rm m}(z,k)$  is the matter power spectrum

 $\checkmark$  in good agreement with hydrodynamical simulations results (Villaescusa-Navarro et al., 2018)



#### **Power Spectrum Multipoles Expansion**

$$P_{21}(z, k, \mu) = \bar{T}_{\rm b}^2(z)$$

Expand in  $\mu$ 

 $P_{21}(k,\mu) = \sum_{\ell} P_{\ell}(k) \mathscr{L}_{\ell}(\mu)$ where the Legendre polynomials a

$$P_{\ell}(z,k) = \frac{(2\ell+1)}{2} \int_{-1}^{1} d\mu \,\mathscr{L}_{\ell}(\mu) P_{21}(z,k,\mu)$$

$$P_{\ell}(z,k) = \frac{(2\ell+1)}{2} \bar{T}_{b}^{2}(z) P_{m}(z,k) \int_{-1}^{1} d\mu \mathscr{L}_{\ell}(\mu) \left[ b_{\text{HI}}(z) + f(z) \mu^{2} \right]^{2}$$

 $\rightarrow$  We forecast observations for the power spectrum  $P_{21}(z, k, \bar{\mu})$  and the multipoles  $P_{\ell}(z, k)$ 



M. Berti

$$\left[b_{\rm HI}(z) + f(z)\mu^2\right]^2 P_{\rm m}(z,k)$$

are 
$$\mathscr{L}_0(\mu) = 1$$
$$\mathscr{L}_2(\mu) = \frac{3\mu^2}{2} - \frac{1}{2}$$





## SKA Observatory (SKAO)

Cosmic Dawn, Reionization



Credit: skatelescope.org

 $\rightarrow$  Radio frequencies

 $\rightarrow$  Covers all the relevant frequencies with unprecedented sensitivity

#### **SKA-LOW** 50 MHz - 350 MHz 30 > *z* > 3



#### post-Reionization Universe



**SKA-MID** 350 MHz - 13.5 GHz 3 > z > 0

**MeerKAT** (SKA pathfinder) 1.5 > z > 0







## Modelling SKAO Observations

#### I. Instrumental Noise

$$P_{\rm N}(z) = \frac{T_{\rm sys}^2 4\pi f_{\rm sky}}{N_{\rm dish} t_{\rm obs} \delta \nu} \frac{V_{\rm bin}(z)}{\Omega_{\rm sur}}$$

#### SKAO specifications

| Parameter                   |                            | Value |
|-----------------------------|----------------------------|-------|
| $D_{\text{dish}}$ [m]       | SKAO dish diameter         | 15    |
| $N_{ m dish}$               | SKAO dishes                | 133   |
| <i>t</i> <sub>obs</sub> [h] | observing time             | 10000 |
| T <sub>sys</sub> [K]        | system temperature         | 25    |
| $\delta v [MHz]$            | frequency range            | 1     |
| $\Omega_{sur,1}$ [sr]       | survey area (Band 2)       | 1.5   |
| $\Omega_{sur,2}$ [sr]       | survey area (Band 2)       | 6.1   |
| $f_{ m sky,2}$              | covered sky area (Band 2)  | 0.12  |
| $f_{ m sky,1}$              | covered sky area (Band 1)  | 0.48  |
| $\Delta z$                  | width of the redshift bins | 0.5   |

SKAO Red Book (2018)





III. Covariance Between Multipoles

$$C_{\ell\ell'}(z,k) = \frac{(2\ell+1)(2\ell'+1)}{2} \int_{-1}^{1} d\mu \, \mathscr{L}_{\ell}(\mu) \, \mathscr{L}_{\ell'}(\mu) \, \sigma^2(z,k,\mu)$$
$$\sigma^2(z,k,\mu) \propto \left(P_{21}(z,k,\mu) + P_{N}(z)\right)^2$$
variance



## The Power Spectrum Mock Data Set



- MeerKAT like observations
- Auto-power spectrum
- One redshift bin
- More realistic measurement







## The Multipoles' Mock Data Set

- SKAO like observations
- Monopole and quadrupole
- Observations within 6 redshift bins
- Beam's effect, multipole covariance





| 1 | 2 |
|---|---|
|   |   |

# Probing the $\Lambda \text{CDM}$ Universe

## Constraints From the 21cm Signal



#### Analysis set up

- Full MCMC analysis
- Implement a new likelihood code integrated with CosmoMC
- Varying the full set of cosmological parameters  $\{\Omega_b h^2, \Omega_c h^2, \tau, \theta_{\rm MC}, A_s, n_s\}$
- Test the constraining power of the 21cm signal alone and combined with CMB
- Multiples' mock data set 6 bins
- 21cm alone has a good constraining power on the cosmological parameters
- Marked correlations ( $\Omega_c h^2 H_0$  and  $\sigma_8 A_s$ )



#### SKAO vs MeerKAT Forecasts



Berti et al. (2023a)

M. Berti



Berti et al. (2022)

| 1 | 5            |
|---|--------------|
| - | $\mathbf{O}$ |

## **Constraints in Combination With CMB**



| Parameter         | Planck 2018 | $+P_0 + P_2$ |
|-------------------|-------------|--------------|
| $\Omega_b h^2$    | 0.64%       | 0.49%        |
| $\Omega_c h^2$    | 0.99%       | 0.25%        |
| n <sub>s</sub>    | 0.42%       | 0.27%        |
| $\ln(10^{10}A_s)$ | 0.46%       | 0.17%        |
| τ                 | 13.44%      | 6.09%        |
| $100 \theta_{MC}$ | 0.03%       | 0.03%        |
| $H_0$             | 0.79%       | 0.16%        |
| $\sigma_8$        | 0.73%       | 0.26%        |

- Constraints are significantly improved with respect to Planck alone
- Removed degeneracies
- We loose constraining power when introducing astrophysical nuisances



#### SKAO vs MeerKAT Forecasts





# Probing the Beyond $\Lambda\text{CDM}$ Universe

- MEERKAT forecasts for the 21cm power spectrum
- One redshift bin at z = 0.39
- More ideal multiple bins data set
- Study of  $DE \rightarrow Effective Field Theory$





## **Effective Field Theory of Cosmic Acceleration**

#### Introduced to describe INFLATION

Creminelli et al. (2006), Cheung et al. (2008)

#### Effective

Easily interfaced with observations



#### Unifying

Must include as many DE/MG models as special cases

## Studied Models

Parametrise the evolution of the background EFT functions

$$S = \int d^4x \sqrt{-g} \left\{ \frac{m_0^2}{2} \left[ 1 + \Omega^{\text{EFT}}(\tau) \right] R + \Lambda(\tau) - c(\tau) a^2 \delta g^{00} \right\} + S_m$$



#### Fix background evolution H(a)

to study only the impact on perturbations

Designer approach

 $\Lambda(a) = \Lambda(\Omega^{\rm EFT}(a), H(a))$  $c(a) = c(\Omega^{\text{EFT}}(a), H(a))$ 





## Latest Constraints on *pure*EFT Models







## Do We Expect To Be Sensitive?



Berti et al. (2022)

M. Berti 23

![](_page_22_Figure_4.jpeg)

![](_page_22_Figure_5.jpeg)

## Exponential *pure*EFT Results - 21cm Alone

![](_page_23_Figure_1.jpeg)

Berti et al. (2022)

| Par.                                | $P_{21}^{\Lambda { m CDM}}(z=0.39)$ | $P_{21}^{\Lambda CDM}$ (all bins)          |
|-------------------------------------|-------------------------------------|--------------------------------------------|
| $\Omega_0^{ m EFT}\ eta \ \ldots .$ | -<br>$1.21^{+57}_{-70}$             | $0.053^{+0.075}_{-0.17}\\1.26^{+50}_{-30}$ |
| <i>H</i> <sub>0</sub>               |                                     | $74.1^{+8.1}_{-11}$                        |

- Constraints on the cosmological parameters remain unaffected
- $P_{21}(z = 0.39)$  alone has weak constraining power (realistic)
- Using multiple bins significantly improves the constraining power (ideal)

![](_page_23_Figure_8.jpeg)

![](_page_23_Figure_9.jpeg)

![](_page_23_Figure_10.jpeg)

#### Exponential *pure*EFT Results - 21cm + Planck

![](_page_24_Figure_1.jpeg)

| Par.                                                                | Planck 2018 + $P_{21}^{\rm EFT}(z=0.39)$                                                                                       | Planck 2018 + $P_{21}^{EFT}$ (all bins)                                                                   |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\Omega_c h^2$ .                                                    | $0.1194 \pm 0.0011 \; (-22\%)$                                                                                                 | $0.12042 \pm 0.00080 \ (-43\%)$                                                                           |
| $egin{array}{c} \Omega_0^{\mathbf{EFT}} \ eta & \ldots \end{array}$ | $\begin{array}{r} -0.086\substack{+0.064\\-0.038}\left(-10\%\right)\\ 1.28\substack{+0.58\\-0.22}\left(+4\%\right)\end{array}$ | $\begin{array}{r} -0.079\substack{+0.047\\-0.036}(-26\%)\\ 1.08\substack{+0.42\\-0.25}(-13\%)\end{array}$ |
| $H_0 \ldots$                                                        | $67.63 \pm 0.50 \; (-24\%)$                                                                                                    | $67.15 \pm 0.36 \; (-46\%)$                                                                               |

- Planck 2018 +  $P_{21}(z = 0.39)$  improvement at the 10% level (realistic)
- Planck 2018 +  $P_{21}$  improvement up to the 26% level and 35% level with halved errors (ideal)

![](_page_24_Picture_7.jpeg)

![](_page_24_Picture_8.jpeg)

![](_page_24_Picture_9.jpeg)

#### Testing gravity with gravitational waves x electromagnetic probes cross-correlations G. Scelfo, M. Berti, A. Silvestri, M. Viel, JCAP 02 (2023), arXiv:2210.02460

![](_page_25_Figure_2.jpeg)

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

#### **Related Works**

#### Latest perspectives on weighing the neutrinos with 21cm Intensity Mapping with the SKAO M. Berti, M. Spinelli, B.S. Haridasu, M. Viel, in preparation.

![](_page_26_Figure_2.jpeg)

| Planck 2018               | < 0.259 |
|---------------------------|---------|
| $+ \hat{P}_0 + \hat{P}_2$ | < 0.101 |
| + nuisance                | < 0.129 |

![](_page_26_Figure_6.jpeg)

![](_page_26_Picture_7.jpeg)

## Conclusions

## Conclusions

- observations.
- to a substantial improvement of the constraints on  $\Omega_c h^2$  and  $H_0$ .
- theories.
- 4. 21cm intensity mapping SKAO measurements provide a new interesting high-precision cosmological observations.

1. The results we found are in agreement with similar works in the literature and confirm the key role of present and future late-time 21cm intensity mapping

2. Combining 21cm power spectrum measurements to CMB observations leads

3. Present-day surveys produced encouraging mild constraining power over beyond-ACDM extensions. More ideal 21cm signal SKAO observations within multiple redshift bins could potentially improve the knowledge of DE-MG

cosmological probe, that carries rich information complementary to other

![](_page_28_Picture_10.jpeg)

![](_page_28_Figure_11.jpeg)

![](_page_28_Figure_12.jpeg)

![](_page_28_Figure_13.jpeg)