

Energy-Efficient FPGA Solutions for Large-Scale FFTs and Non-Uniform FFTs

A Software-Hardware Co-Design Approach for Radio Interferometry

<u>Rubén Rodríguez Álvarez</u>, Denisa Constantinescu, Miguel Peón Quirós, Adrien Devresse, Hamza Chouh, Shreyam Krishna, Etienne Orliac, David Atienza

EPFL - Embedded Systems Laboratory, EcoCloud, SCITAS

ruben.rodriguezalvarez@epfl.ch, denisa.constantinescu@epfl.ch

SEAMS Project

Pipelines Profiling & Specification

Single-Node SW/HW co-design

Multi-Node Scale-up

Integration and Testing

On-Field Demonstrator

Scope

Energy-efficient computing with domain-specific accelerators Multi-scale hardware-software co-design approach

Group Members

France

- INSA Rennes: Jean-F. Nezan, Mickaël Dardaillon, Hugo Miomandre, Jacques Morin
- OCA: Shan Mignot, Alain Miniussi, Chiara Ferrari, André Ferrari
- OP: Damien Gratadour

Switzerland

- EcoCloud: Miguel Peon Quiros, David Atienza
- ESL: Denisa Constantinescu, Rubén R. Álvarez, Basile Darne, David Atienza
- SCITAS: Adrien Devresse, Hamza Chouh, Etienne Orliac, Gilles Fourestey

Partners: EPFL, Laboratory of Astrophysics, MeerKAT, SKACH, SKAO

Synthesis (NUFFTs)

- Kashani et al. "HVOX: Scalable Interferometric Synthesis and Analysis of Spherical Sky Maps." (2023).
- Tolley et al. "BIPP: An efficient HPC implementation of the Bluebild algorithm for radio astronomy." (2023).
- Corda et al. "Near memory acceleration on high resolution radio astronomy imaging." MECO. IEEE, (2020).

How do these algorithms map into an FPGA?

FFTs and NUFFTs

Finufft Synthesis

3D FFT takes 40%-90% of the computation

Intro

FFTs and NUFFTs SW/

SW/HW Co-Design

7

Characteristics	Agilex 7 M-Series Dev Kit	Alveo V80 Card
Internal memory	370Mb BRAM	132Mb BRAM + 541Mb URAM
High Bandwith Memory (HBM2e)	32GB @ 1T B/s	32GB @ 810GB/s
Compute Elements	3.9M LEs + 12.3K DSPs + 1.3M ALMs	2.6M LUTs + 10.8K DSPs
Max Power (TDP)	(2x) 240 Watts	190 Watts
Global Memory (DDR4/5)	64 GB	32 GB
Comms	16x PCIe 5, CXL, GbE 116Gbps, fiber optic	2x PCIe 5
Technology	7nm Intel	7nm TSMC
Max Clock Freq	500MHz-1GHz	600MHz-1GHz

SW/HW Co-Design

High-Level Synthesis (HLS) for FPGAs

Characteristics:

- Mixed precision data types
- Parallel, pipeline and serial
- Resources constraints
- Code breakdown
- Highly parametrizable

We teach HLS and Co-Design; used it to accelerate
CNNs and genome alignment applications

HLS is a good fit for changing SW, portable HW, and design explorations

Characteristics	HLS FPGA	CUDA GPU
Programming support	High	High
Productivity (design time)	Medium	High
Energy Efficiency	High	Low-Medium
Latency	Medium	Low
Scalability	High	High
Flexibility	High	Limited

EPFL

FFTs and NUFFTs

EPFL

parallel FFTs

FFT stages

Data format

Transpose buffer

FFT Max FFT size

FFT HW Design and Exploration

Consecutive transfers to memory takes less time and energy

Precision in for FINUFFT Synthesis (BIPP)

EPFL

Sample data extracted from bipp execution, simulated with OSKAR for SKA-Low configuration

Precision in for FINUFFT Synthesis (BIPP)

EPFL

Sample data extracted from bipp execution, simulated with OSKAR for SKA-Low configuration Precision of Floating-Point Formats

SW/HW Co-Design

FFTs and NUFFTs

- Sample Data
- Undesired Precision
- Requirement Range
- Valid Precision
- Real data
- half (FP16)
- float (FP32)
- Custom FP40
- Custom FP42
- double (FP64)

For 32x8196x8196:

Conclusion

Results

Precision in for FINUFFT Synthesis (BIPP)

Sample data extracted from bipp execution, simulated with OSKAR for SKA-Low configuration

Precision of Fixed-Point Formats

Conclusion & Follow Up

Done

- Deploy flexible algorithms using FPGAs
- Accelerate kernels with an FPGA
- Explore the Design Space
- Share resources among different kernels

Ongoing Exploration

- FPGAs improve the energy consumption
- FPGAs match (even increase) the performance of GPUs
- Custom precision data formats are beneficial
- Solve memory-bounded workloads in FPGAs
- Reconfigure the FPGA at run-time for dynamic workloads

Inputs Needed

- Other algorithms to accelerate (i.e. ML)
- Dynamic range of real data (at different stages)
- Precision & latency requirements for different use cases
- Precision metrics (i.e. SNR)
- Scalability of algorithms

Conclusion

Thank you!

Ruben

EPFL - Embedded Systems Laboratory ruben.rodriguezalvarez@epfl.ch denisa.constantinescu@epfl.ch

Backup Slides

Types of NUFFTs algorithms

Method	Spread	FFT	Interpolation
NUFFT ₁	$N_{\rm vis} \left \log \epsilon\right ^2$	$N_{\rm pix} \log N_{\rm pix}$	$N_{ m pix}$
W-gridding	$N_{\rm vis} \left \log \epsilon\right ^3$	$N_{w'}N_{\rm pix}\log N_{\rm pix}$	$N_{w'}N_{ m pix}$
NUFFT ₃	$N_{\rm vis} \left \log \epsilon\right ^3 + N_{\rm mesh}$	$N_{\rm mesh} \log N_{\rm mesh}$	$N_{\rm pix} \left \log \epsilon \right ^3 + N_{\rm pix}$

Kashani, Sepand, et al. "HVOX: Scalable Interferometric Synthesis and Analysis of Spherical Sky Maps." *arXiv preprint arXiv:2306.06007* (2023).