Sustainability of Extreme-Scale Simulations with SPH-EXA

SKA Days 2024 September 02-04, 2024, Geneva

Osman Seckin Simsek

https://github.com/unibas-dmi-hpc/SPH-EXA

Florina Ciorba (PI) Ruben Cabezon (Co-PI) Osman Seckin Simsek Yiqing Zhu Lukas Schmidt José Escartin

Lucio Mayer (Co-PI) Noah Kubli Darren Reed

Sebastian Keller Jean-Guillaume Piccinali Jean Favre Jonathan Coles

Axel Sanz (UPC) Joseph Touzet (Paris-Saclay)

TGSF: The role of Turbulence and Gravity in Star Formation

TGSF: The role of Turbulence and Gravity in Star Formation

, **Sonic scale** (I_s) : is the scale at which the transition from supersonic to subsonic turbulence occurs.

 $l_s = \phi_s L(\mathcal{M})^{-2}$

 ϕ_s encompases our lack of knowledge about the exact position of the Sonic scale. Usually taken as $\phi_s = 1$

Nevertheless, a large-scale simulation (Federrath et al. 2021) has directly measured ϕ_s to be x2.4 smaller.

This pushes the collapse scale to smaller scales than previously considered and it has a critical relevance in the predictive power of star formation theories.

In order to test this, self-gravity must be included in such simulations.

Definition

TGSF: The role of Turbulence and Gravity in Star Formation

Gas density contrast distribution of ISM turbulence. (Federrath et al., Nature Astronomy, 5, 2021)

Eulerian code 10,048³ grid cells Hydrodynamics only (no gravity)

ČPU only (65,536 cores)

SPH-EXA Lagrangian code 10,079³ SPH particles Hydrodynamics + gravity CPU + GPU (16,416 GPUs)

Velocity field distribution of subsonic turbulence. 3000³ particles (SPH-EXA team, 2023)

is a scalable smoothed particle hydrodynamics simulation framework interdisciplinarily co-designed by computational physicists and computer scientists to exploit Exascale supercomputers.

SPH-EXA: Framework Components

SPH-EXA: Optimization Strategy

Sustainable Computing Motivation – Astronomy and Astrophysics

Source: https://www.astronet-eu.org

Sustainability of Extreme-Scale Simulations with SPH-EXA

Energy Measurement and Reporting: Device Breakdown

Turbulence on LUMI-G AMD MI250X 32 MPI Ranks

Turbulence on CSCS Nvidia A100 32 MPI Ranks

Energy Measurement and Reporting: Functional Breakdown

Code functional breakdown, 100 time-steps, 32 MPI Ranks on 4 LUMI-G Nodes and 8 CSCS-A100 Nodes

TGSF Simulation Plan

TGSF Low-Resolution Simulation Energy Measurements

TGSF Low-Resolution Simulation Energy Measurements

- Total of 35 jobs.
 - 6 failed and 29 successful.
- Succesful jobs = 242'849.56 GPUh
 - Measured value.
- Failed jobs = 34'082.44 GPUh
 - Calculated value.

