Radio galaxy image generation with the scattering transform

Markus Bredberg

markus.bredberg@epfl.ch PhD student, LASTRO, EPFL, Supervisor: Emma Tolley Co-supervisor: Rémi Poitevineau 3rd of September 2024

With great telescopes comes great data challenges

Machines learn differently from humans

Content

- 1. **The scattering transform** A non-trainable CNN
- 2. **Generation** Shallow and deep image generation
- 3. **Conclusions and outlook**

Scattering transform

A non-trainable convolutional neural network

Wavelet kernels are localised and extract features

Wavelet kernels are localised and extract features

Morlet wavelets are sinusoids with Gaussian envelopes $\psi_{j,\ell}(u) = 2^{-2j}\psi(2^{-j}r_{\theta}u)$ for $0 \leq \ell < L, \theta = \ell \pi/L$

Scattering transform is a cascade of wavelet transforms

Input image Order 0

Scattering transform is a cascade of wavelet transforms

Scattering transform is a cascade of wavelet transforms

Scattering transforms are iterative wavelet transforms

$$
\Psi_{J,L}(x) = [X, |X \star \psi_{j,\ell}|, ||X \star \psi_{j,\ell}| \star \psi_{j',\ell'}||_{1 \leq \ell, \ell' \leq L, 1 \leq j < j' \leq J}
$$
\n
$$
\phi_J(u) = 2^{-2J} \phi(2^{-J}u)
$$
\n
$$
S_{J,L}(X) = \Psi_{J,L}(X) \star \phi_J
$$
\n
$$
= [X \star \phi_J, |X \star \psi_{j,\ell}| \star \phi_J, |X \star \psi_{j,\ell}| \star \psi_{j',\ell'}| \star \phi_J]_{1 \leq j < j' \leq J, 1 \leq \ell, \ell' \leq L}
$$

 $X\star \phi_2$ $|X\star \psi_{0,0}|\star \phi_2$ $|X\star \psi_{0,1}|\star \phi_2$ $|X\star \psi_{1,0}|\star \phi_2$ $|X\star \psi_{1,1}|\star \phi_2$ $\|X\star \psi_{0,0}|\star \psi_{1,0}|\star \phi_2$ $\|X\star \psi_{0,0}|\star \psi_{1,1}|\star \phi_2$ $\|X\star \psi_{0,1}|\star \psi_{1,0}|\star \phi_2$ $\|X\star \psi_{0,1}|\star \psi_{1,1}|\star \phi_2$

The scattering transform is a simplified CNN or extended power spectrum

The scattering transform extracts features

Cheng & Ménard, 2021, arXiv:2112.01288v1

The scattering transform could be invertible

$$
\frac{n_{\text{ST}}}{n_{\text{pixels}}} = 2^{-2J} \left(1 + LJ + L^2 \frac{J(J-1)}{2} \right)
$$

Generation

Shallow and deep image generation

Datasets used for this work

Datasets used for this work

For generation:

Reconstruction from scattering coefficients without DL

Input image

Reconstruction from scattering coefficients without DL

Input image

Processing:

- 1. Pixels: no processing
- 2. Full: scattering transform (ST)
- 3. lavg: ST + average across direction
- 4. ldiff: ST + subtract adjacent directions
- 5. javg: ST + average across scale

Reconstruction from scattering coefficients without DL

Input image

Processing:

- 1. Pixels: no processing
- 2. Full: scattering transform (ST)
- 3. lavg: ST + average across direction
- 4. ldiff: ST + subtract adjacent directions
- 5. javg: ST + average across scale

- Average across space
- Average across space + direction
- Average across adjacent directions

Numerical reconstruction is poor

J=3, L=8, 15,000 iterations, T=6h J=3, L=2, 15,000 iterations, T=0.5h

Numerical reconstruction is poor

J=3, L=8, 15,000 iterations, T=6h J=3, L=2, 50,000 iterations, T=2h

Numerical reconstruction is poor

J=3, L=8, 15,000 iterations, T=6h J=3, L=2, 100,000 iterations, T=4h

The scattering transform reproduces fields and textures

The scattering transform reproduces fields and textures but not sparse sources

Dimensional correlations demand variable mixing

FRI FRII

Variational autoencoders sample features and construct images

The encoder learns spatial features, by first extracting shapes

The encoder learns spatial features, by first extracting shapes, then learning their dependencies

25,700

273,380

 $2*32$

Linear

Layer type

The encoder learns spatial features, by first extracting shapes, then learning their dependencies, and then

upscaling

Model reproduces smoother sources than the originals

Model reproduces fainter sources than the originals

But the scattering transform is faster

Conclusions and outlook

Conclusions

- 1. The scattering transform (ST) is computationally efficient and interpretable
- 2. Scattering-based generative modelling of radio galaxies require multivariate learning
- 3. My variational autoencoders produces overly smooth and faith images

Future plans

- 1. More complex generative models
	- a. Generative Adversarial Networks (GANs)
	- b. Diffusion models
	- c. Normalising flows
- 2. Apply on diffuse cluster radio emission

Markus Bredberg

markus.bredberg@epfl.ch

Bonus slides

Clarifications

Classification for labelling and evaluation

Shallow generation in epochs

Running the generative script: the algorithm schematically

Running the generative script: the filtering

The scattering transform can categorise

Cheng & Ménard, 2021, arXiv:2112.01288v1

Classifying with the scattering transform

Scattering transform classification speeds up

CNN: 99.33%

Scattering Transform Network: 9925%

99.69% 0.10%

99.21%

The VAEs do not learn the feature representation

