Radio galaxy image generation with the scattering transform

Markus Bredberg

markus.bredberg@epfl.ch PhD student, LASTRO, EPFL, Supervisor: Emma Tolley Co-supervisor: Rémi Poitevineau 3rd of September 2024

With great telescopes comes great data challenges

Machines learn differently from humans

Generalisation

Energy consumption

Content

- 1. The scattering transform A non-trainable CNN
- 2. Generation Shallow and deep image generation
- 3. Conclusions and outlook

Scattering transform

A non-trainable convolutional neural network

Wavelet kernels are localised and extract features

Wavelet kernels are localised and extract features

Morlet wavelets are sinusoids with Gaussian envelopes $\psi_{j,\ell}(u) = 2^{-2j}\psi(2^{-j}r_{\theta}u) \text{ for } 0 \le \ell < L, \theta = \ell \pi/L$

Scattering transform is a cascade of wavelet transforms

Input image (Order 0)

Scattering transform is a cascade of wavelet transforms

Scattering transform is a cascade of wavelet transforms

Scattering transforms are iterative wavelet transforms

$$\begin{split} \Psi_{J,L}(x) &= [X, |X \star \psi_{j,\ell}|, ||X \star \psi_{j,\ell}| \star \psi_{j',\ell'}|]_{1 \le \ell,\ell' \le L, \ 1 \le j < j' \le J} \\ \phi_J(u) &= 2^{-2J} \phi(2^{-J}u) \\ S_{J,L}(X) &= \Psi_{J,L}(X) \star \phi_J \\ &= [X \star \phi_J, |X \star \psi_{j,\ell}| \star \phi_J, ||X \star \psi_{j,\ell}| \star \psi_{j',\ell'}| \star \phi_J]_{1 \le j < j' \le J, 1 \le \ell,\ell' \le L} \end{split}$$

 $X \star \phi_2 = |X \star \psi_{0,0}| \star \phi_2 = |X \star \psi_{0,1}| \star \phi_2 = |X \star \psi_{1,0}| \star \phi_2 = |X \star \psi_{1,1}| \star \phi_2 = |X \star \psi_{0,0}| \star \psi_{1,0}| \star \phi_2 = |X \star \psi_{0,0}| \star \psi_{1,1}| \star \phi_2 = |X \star \psi_{0,0}| \star \psi_{1,1}| \star \phi_2 = |X \star \psi_{0,1}| \star \psi_{1,0}| \star \psi_{1,1}| \star \phi_2 = |X \star \psi_{0,1}| \star \psi_{1,1}| \star \psi_2 = |X \star \psi_{0,1}| \star \psi_{1,1}| \star \psi_2 = |X \star \psi_{0,1}| \star \psi_2 = |X \star \psi_1 =$

The scattering transform is a simplified CNN or extended power spectrum

	<u>CNN</u>	Power Spectrum	Scattering Transform
Convolutions	Feature convolutions	Filters	Localised kernels
Non-linear function	Activation function	Modulus squared	Modulus
Average	Pooling	Global average	Global average
Repetition	Multi-layer	Single layer	Iterations

The scattering transform extracts features

Cheng & Ménard, 2021, arXiv:2112.01288v1

The scattering transform could be invertible

$$\frac{n_{\rm ST}}{n_{\rm pixels}} = 2^{-2J} \left(1 + LJ + L^2 \frac{J(J-1)}{2} \right)$$

Generation

Shallow and deep image generation

Datasets used for this work

Input data	MNIST	Mirabest	FIRST	Galaxy10
Image size	28x28	150x150	300x300	3x256x256
Number of samples per class	6000	~500	~500	~1000
Example images	0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9			Datarbel Nerging Neurof Smoth In Secters Round Smoth Cape Rand Smoth Smoth Earle Spiral Under Strate Spiral Under Strate Spiral Under Spiral Under Spiral Cape on with Auge Spiral Under Spiral Cape on with Auge Spiral Under Spiral Cape on with Auge Spiral Cape on With Aug
# of classes	10	2	4	10
Source	Deng 2012, doi.org/10.1109/MSP. 2012.2211477	Porter & Scaife 2023, arXiv:2305.11108 v1	Griese et al. 2023, doi.org/10.1016/j.d ib.2023.108974	Lintott et al. 2011, arXiv:1007.3265

Datasets used for this work

For generation:

Input data	MNIST	Mirabest	FIRST	Galaxy10		
Image size	28x28	150x150	300x300	3x256x256		
Number of samples per class	6000	~500	~500	~1000		
Example images	0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9		Image: set of the set of th	Disturbed Nearly Ne		
# of classes	10	2	4	10		
Source	Deng 2012, doi.org/10.1109/MSP. 2012.2211477	Porter & Scaife 2023, arXiv:2305.11108 v1	Griese et al. 2023, doi.org/10.1016/j.d ib.2023.108974	Lintott et al. 2011, arXiv:1007.3265		

Reconstruction from scattering coefficients without DL

Input image

Reconstruction from scattering coefficients without DL

Input image

* Processing:

- 1. Pixels: no processing
- 2. Full: scattering transform (ST)
- 3. lavg: ST + average across direction
- 4. Idiff: ST + subtract adjacent directions
- 5. javg: ST + average across scale

Reconstruction from scattering coefficients without DL

Input image

* <u>Processing</u>:

- 1. Pixels: no processing
- 2. Full: scattering transform (ST)
- 3. lavg: ST + average across direction
- 4. ldiff: ST + subtract adjacent directions
- 5. javg: ST + average across scale

- Average across space
- Average across space + direction
- Average across adjacent directions

•••

Numerical reconstruction is poor

J=3, L=8, 15,000 iterations, T=6h J=3, L=2, 15,000 iterations, T=0.5h

Numerical reconstruction is poor

J=3, L=8, 15,000 iterations, T=6h

J=3, L=2, 50,000 iterations, T=2h

Numerical reconstruction is poor

J=3, L=8, 15,000 iterations, T=6h J=3, L=2, 100,000 iterations, T=4h

The scattering transform reproduces fields and textures

The scattering transform reproduces fields and textures but not sparse sources

27

Dimensional correlations demand variable mixing

FRI

FRII

Variational autoencoders sample features and construct images

The encoder learns spatial features, by first extracting shapes

Layer	Component Depth Activatio		Activation	Regulariser	Pooling	Parameters	
1-3	5x5 Convolution	32	Leaky ReLU	Batch norm.	2x2 Max pooling	19,520	
4-6	5x5 Convolution	64	Leaky ReLU	Batch norm.	2x2 Max pooling	125,504	
7-9	5x5 Convolution	128	Leaky ReLU	Batch norm.	2x2 Max pooling	353,244	
10-12	5x5 Convolution	256	Leaky ReLU	Batch norm.	2x2 Max pooling	2,001,152	
13-15	5x5 Convolution	256	Leaky ReLU	Batch norm.	2x2 Max pooling	2,820,352	
						5,319,772	

The encoder learns spatial features, by first extracting shapes, then learning their dependencies

273,380

Layer type

The encoder learns spatial features, by first extracting shapes, then learning their dependencies, and then

upscaling

Layer	Component	Depth	Activation	Regulariser	Parameters		
1	Linear	2048	Leaky ReLU	-	67,584		
2-4	4x4 Convolutional transpose	64	Leaky ReLU	Batch norm.	205,376		
5-7	4x4 Convolutional transpose	128	Leaky ReLU	Batch norm.	427,136		
8-10	4x4 Convolutional transpose	64	Leaky ReLU	Batch norm.	205,376		
11-13	4x4 Convolutional transpose	32	Leaky ReLU	Batch norm.	51,488		
14	4x4 Convolutional transpose	1	Sigmoid	75	513		

Model reproduces smoother sources than the originals

Reconstructed					Generated				Generated						
Originals		i ji ind	- (ß	1		الله من ال الله من ال		8	-	Selected randomly				У
CNN	•	er.	,	6		•	•	-	N	-	ł		, t	1	÷
Dual	٠		-	•	1	•		-	N	-	i.	-		•	•
STMLP				ł	Geo.	•	-	-	N	**	1	- 20	N	N.	•
IdiffSTMLP	3. A.S.	Ş-d		X		•		-	N.	-	ł	i.	Тţ.	-	**
lavgSTMLP				ġ.		•		-	٩	-	×			×.,	7

Model reproduces fainter sources than the originals

But the scattering transform is faster

Conclusions and outlook

Conclusions

- The scattering transform (ST) is computationally efficient and interpretable
- 2. Scattering-based generative modelling of radio galaxies require multivariate learning
- 3. My variational autoencoders produces overly smooth and faith images

Future plans

- 1. More complex generative models
 - a. Generative Adversarial Networks (GANs)
 - b. Diffusion models
 - c. Normalising flows
- 2. Apply on diffuse cluster radio emission

Markus Bredberg

markus.bredberg@epfl.ch

Bonus slides

Clarifications

Classification for labelling and evaluation

Shallow generation in epochs

Running the generative script: the algorithm schematically

Running the generative script: the filtering

The scattering transform can categorise

Cheng & Ménard, 2021, arXiv:2112.01288v1

Classifying with the scattering transform

Scattering transform classification speeds up Scattering Transform Network:

CNN: 99.33%

The VAEs do not learn the feature representation

