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With great telescopes comes great data challenges
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Machines learn differently from humans
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Real data
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Scattering 
transform
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A non-trainable convolutional neural network



The scattering transform uses wavelet kernels
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Wavelet kernels are localised and extract features
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Wavelet kernels are localised and extract features
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Morlet wavelets are sinusoids with Gaussian envelopes
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Scattering transform is a cascade of wavelet transforms 

10

Input image 
Order 0



Scattering transform is a cascade of wavelet transforms 
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Scattering transform is a cascade of wavelet transforms 
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Scattering transforms are iterative wavelet transforms
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The scattering transform is a simplified CNN or extended 
power spectrum 

CNN

Convolutions Feature convolutions

Non-linear function Activation function

Average Pooling

Repetition Multi-layer

Power Spectrum Scattering Transform

Filters Localised kernels
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Single layer Iterations
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The scattering transform extracts features
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Feature sparsity Wrinkliness

Cheng & Ménard, 2021, arXiv:2112.01288v1



The scattering 
transform could be 
invertible
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Generation
Shallow and deep image generation
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Datasets used for this work
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Input data MNIST Mirabest FIRST Galaxy10

Image size 28x28 150x150 300x300 3x256x256

Number of 
samples per 
class

6000 ~500 ~500 ~1000

Example 
images

# of classes 10 2 4 10

Source Deng 2012, 
doi.org/10.1109/MSP.
2012.2211477

Porter & Scaife 
2023, 
arXiv:2305.11108
v1

Griese et al. 2023, 
doi.org/10.1016/j.d
ib.2023.108974

Lintott et al. 2011, arXiv:1007.3265
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For generation:



Reconstruction from scattering coefficients without DL
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Reconstruction from scattering coefficients without DL
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● PCA
● Average across space
● Average across space + direction
● Average across adjacent directions
● …



Numerical reconstruction is poor

J3, L2, 15,000 iterations, T0.5hJ3, L8, 15,000 iterations, T6h
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Numerical reconstruction is poor
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Numerical reconstruction is poor
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The scattering transform reproduces fields and textures
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Cheng & Ménard, 2021, 
arXiv:2112.01288v1



The scattering transform reproduces fields and textures 
but not sparse sources
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Cheng & Ménard, 2021, 
arXiv:2112.01288v1



Dimensional correlations demand variable mixing
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Variational autoencoders sample features and construct 
images
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The encoder learns spatial features, by first extracting 
shapes
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The encoder learns spatial features, by first extracting 
shapes, then learning their dependencies
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The encoder learns spatial features, by first extracting 
shapes, then learning their dependencies, and then 
upscaling
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Model reproduces smoother sources than the originals
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Model reproduces fainter sources than the originals
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But the scattering transform is faster
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Conclusions 
and outlook
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Future plans
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1. More complex generative models
a. Generative Adversarial 

Networks GANs
b. Diffusion models
c. Normalising flows

2. Apply on diffuse cluster radio 
emission

Conclusions

1. The scattering transform ST) is 
computationally efficient and 
interpretable

2. Scattering-based generative 
modelling of radio galaxies 
require multivariate learning

3. My variational autoencoders 
produces overly smooth and 
faith images

Markus Bredberg 
markus.bredberg@epfl.ch



Bonus slides
Clarifications

Classification for labelling and evaluation
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Shallow generation in epochs
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Running the generative script: the algorithm schematically
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Running the generative script: the filtering
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The scattering transform can categorise
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Cheng & Ménard, 2021, arXiv:2112.01288v1



Classifying with the scattering transform
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CNN
Layer 
type

Depth Kernel 
size

Activation Pooling type Pooling 
size

Conv2D 32 5x5 ReLU MaxPool2D 2x2

Conv2D 64 5x5 ReLU MaxPool2D 2x2

Scattering Transform

or



Scattering transform classification speeds up 
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CNN 99.33%
Scattering Transform Network: 

9925%

Markus Bredberg, Jiaxin Guo, Han Zhang 2024
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The VAEs do not learn the feature representation
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