R2D2'S FAST PRECISION IMAGING IN RADIO ASTRONOMY (BUT NOT ONLY)

Prof. Yves Wiaux, Edinburgh

on behalf of BASP & Co.

Swiss SKA Days, September 3rd 2024

Computational imaging & modern challenges

Across science and technology, when observation gathers incomplete information about an image, advanced computational imaging algorithms are needed to transform data into images.

► Applications range from medicine or defence, to astronomy...

Challenges:

- Precision: unprecedented resolution and dynamic range regimes
- Scalability: extreme data volumes
- Robustness: uncertainty quantification, as well as calibration functionalities (not discussed in this talk)

COMPUTATIONAL IMAGING IN RADIO ASTRONOMY ... challenges & CLEAN

... from DNN series to astronomical imaging (but not only)

Computational imaging in radio Astronomy

Aperture synthesis by radio interferometry

Aperture synthesis by radio interferometry (RI) provides access to high resolution high-dynamic range. But forming an image \hat{x} from visibility data y is an ill-posed inverse problem.

The data provide an incomplete Fourier sampling of the sky, leading to a deconvolution problem:

$$y = \Phi \hat{x} + n$$

Reconstruction algorithms are needed, leveraging a prior image model to regularise and solve the problem:

$$m{y}
ightarrow \hat{m{x}}$$

Accurate image models are needed for precision and scalability

The Square Kilometre Array

SKA will target unprecedented resolution and sensitivity regimes, leading to EB data volumes and PB wide-band image sizes.

Image credit SKA organisation

Reconstruction algorithms must be scalable

Celebrated CLEAN

The standard CLEAN algorithm is a greedy matching pursuit algorithm, iteratively identifying model components from back-projected data residuals.

• Write backprojected data as convolution of \hat{x} with PSF Re{ $\Phi^{\dagger}\Phi$ } δ :

$$\mathbf{x}_{ ext{dirty}} = \kappa \operatorname{Re}\{\mathbf{\Phi}^{\dagger}\mathbf{y}\} \simeq \kappa \operatorname{Re}\{\mathbf{\Phi}^{\dagger}\mathbf{\Phi}\}\mathbf{\delta} \star \widehat{\mathbf{x}} + \mathbf{n}'$$

with $\kappa = 1/\max(\mathsf{Re}\{\mathbf{\Phi}^\dagger\mathbf{\Phi}\}oldsymbol{\delta})$

CLEAN iteration structure:

$$\mathbf{x}^{(i)} = \mathbf{x}^{(i-1)} + \mathcal{T}\left(\mathbf{x}_{\text{dirty}} - \kappa \text{Re}\{\mathbf{\Phi}^{\dagger}\mathbf{\Phi}\}\mathbf{x}^{(i-1)}\right)$$

with ${\mathcal T}$ peeling operator implicitly enforcing a sparse image model

- Simplistic model: scalable, but limiting precision
- RI image reconstruction is to be reinvented

$R2D2 \ \mbox{algorithm}$

REFERENCES

- ↔ Aghabiglou et al., Proc. ICASSP 2023, arXiv:2210.1606
- \hookrightarrow Dabbech et al., ApJL, 2024, arXiv:2309.03291
- \hookrightarrow Aghabiglou et al., ApJS, 2024, arXiv:2403.05452
- \hookrightarrow Aghabiglou et al., Proc. EUSIPCO, arXiv:2403.18052
- \hookrightarrow Chen et al., Proc. EUSIPCO, arXiv:2403.17905

Non satisfied with the highly iterative nature of optimisation algorithms, hampering scalability, deep learning solutions are appealing.

- Purely data-driven DNNs do not generalise well.
- Unfolded DNNs do not scale well due to limitations in embedding measurement operators in network architectures.

R2D2 applies DNNs iteratively, each taking the previous iteration's image estimate and back-projected data residual as input, and reconstructing the residual between the ground truth and the reconstruction of the previous iteration.

► R2D2 iteration structure:

$$oldsymbol{x}^{(i)} = oldsymbol{x}^{(i-1)} + oldsymbol{\mathsf{N}}_{\widehat{oldsymbol{ heta}}^{(i)}}(oldsymbol{r}^{(i-1)},oldsymbol{x}^{(i-1)})$$

with
$$\mathbf{r}^{(i-1)} = \mathbf{x}_{dirty} - \kappa \text{Re}\{\mathbf{\Phi}^{\dagger}\mathbf{\Phi}\}\mathbf{x}^{(i-1)}$$

• "Series" expression for $x^{(l)}$:

$$\widehat{\mathbf{x}} \triangleq \mathbf{x}^{(l)} = \sum_{i=1}^{l} \mathsf{N}_{\widehat{\theta}^{(i)}}(\mathbf{r}^{(i-1)}, \mathbf{x}^{(i-1)})$$

► Training losses for $N_{\widehat{\theta}^{(i)}}$ sequence:

$$\widehat{\boldsymbol{\theta}}^{(i)} = \arg\min_{\boldsymbol{\theta}^{(i)} \in \mathbb{R}^Q} \frac{1}{L} \sum_{l=1}^{L} \| \boldsymbol{x}_l^{\star} - [\boldsymbol{x}_l^{(i-1)} + \boldsymbol{\mathsf{N}}_{\boldsymbol{\theta}^{(i)}}(\boldsymbol{r}_l^{(i-1)}, \boldsymbol{x}_l^{(i-1)})]_+ \|_1$$

R2D2's high-dynamic range networks are trained from low-dynamic range databases, with flexibility in the underpinning network architecture.

Creating a high-dynamic range database by exponentiating low-dynamic range astronomical and medical image datasets:

R2D2's high-dynamic range networks are trained from low-dynamic range databases, with flexibility in the underpinning network architecture.

 U-Net architecture underpinning the first R2D2 incarnation (learned version of Högbom CLEAN):

R2D2's high-dynamic range networks are trained from low-dynamic range databases, with flexibility in the underpinning network architecture.

R2D2-Net architecture underpinning the second R2D2 incarnation, aka R3D3 (learned version of Cotton-Schwab CLEAN):

R2D2: RI training setting

A first instance of R2D2 is specifically trained for VLA imaging.

- Groundtruth images:
 - $\checkmark~$ Exponentiated images with dynamic ranges in $[10^3, 5\times 10^5]$
 - $\checkmark~$ 10k images with 512 \times 512 pixels
- Observation model:
 - $\checkmark~$ 20k VLA sampling patterns with [0.2, 2] million data points
 - ✓ Input SNR commensurate to image dynamic range
 - ✓ Briggs weighting
 - ✓ Super-resolution factor 1.5

Medical images

R2D2: RI simulation setting

Our first instance of R2D2 is validated in simulation for VLA imaging.

- Groundtruth images:
 - ✓ Real radio images with a dynamic range $[10^3, 5 \times 10^5]$
 - $\checkmark~$ 4 images with 512 \times 512 pixels
- Observation model:
 - $\checkmark~$ 50 VLA sampling patterns with [0.2, 2] million data points
 - $\checkmark\,$ Input SNR commensurate to image dynamic range
 - Briggs weighting
 - ✓ Super-resolution factor 1.5

R2D2: quantitative RI simulation results

Quantitative metrics confirm R2D2 brings superior precision to AIRI and uSARA... at a fraction of the cost.

Model	SNR \pm std (dB)	logSNR \pm std (dB)	$t_{ m tot} \pm { m std}$ (sec)	iteration $\#$
CLEAN	13.6±3.6	10.3±3.5	65.9±14.2	$9\pm1^{*_{1}}$
uSARA	30.8±1.9	21.9±3.3	$4184.2{\pm}1548.9$	1103 ± 373
AIRI	31.3±2.3	21.9 ± 4.4	$3478.8{\pm}1531.4$	$5000{\pm}0.0^{*_2}$
U-Net	20.5±2.7	6.6±3.3	$1.1{\pm}0.1$	1
R2D2-Net	33.7±1.7	24.0±4.7	$1.1{\pm}0.1$	1
R2D2	33.7±1.5	25.0±4.9	2.9±0.3	15
R3D3	34.0±1.6	25.3±4.7	2.2±0.3	8

Simulation results:

*1: number of "major cycles"

*2: max. iteration number systematically reached

R2D2 trained for VLA: visual simulations results

Reconstruction results from simulated observations of the 3C353 source.

Model evolution across iterations for R2D2 incarnation with U-Net:

 $x^{(1)}$

Log scale visualisation

0.00027 0.0024 0.014 0.077 0.43

Log scale visualisation

Linear scale visualisation

R2D2 trained for VLA: visual simulations results

Reconstruction results from simulated observations of the 3C353 source.

Model evolution across iterations for R2D2 incarnation with U-Net:

 $x^{(2)}$ $N_{\widehat{\theta}^{(2)}}(r^{(1)}, x^{(1)})$ $r^{(1)}$ 0.0024 0.014 0.077 0.43 -0.08 -0.04 0.04 0.08 0.00027 -0.0045 -0.0023 -7.9e-05 0.0021 0.0044 9 8e-05 Log scale visualisation Linear scale visualisation Linear scale visualisation

R2D2 trained for VLA: visual simulations results

Reconstruction results from simulated observations of the 3C353 source.

Model evolution across iterations for R2D2 incarnation with U-Net:

Which methods hide behind these Cygnus A images formed from real VLA observations?

Dirty image (2.05GHz, 20MB data, 512 × 512 pixels):

Which methods hide behind these Cygnus A images formed from real VLA observations?

▶ Method #1 (2.05GHz, 20MB data, 512 × 512 pixels):

Which methods hide behind these Cygnus A images formed from real VLA observations?

• Method #2 (2.05GHz, 20MB data, 512 × 512 pixels):

Which methods hide behind these Cygnus A images formed from real VLA observations?

► Method #1: CLEAN

Which methods hide behind these Cygnus A images formed from real VLA observations?

Method #2: R3D3

On the R2D2 model uncertainty

Generating "R2D2 samples" from multiple series, trained from different random initialisations, enables tracking model uncertainty.

▶ In few iterations only, model uncertainty decreases to very low levels:

On the R2D2 model uncertainty

Generating "R2D2 samples" from multiple series, trained from different random initialisations, enables tracking model uncertainty.

▶ In few iterations only, model uncertainty decreases to very low levels:

On the R2D2 model uncertainty

Generating "R2D2 samples" from multiple series, trained from different random initialisations, enables tracking model uncertainty.

▶ In few iterations only, model uncertainty decreases to very low levels:

On the transfer of technology to MRI

R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from accelerated radial k-space sampling with data-intensive multi-coil acquisitions.

► R2D2 supersedes scalable competitors up to high acceleration:

On the transfer of technology to MRI

R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from accelerated radial k-space sampling with data-intensive multi-coil acquisitions.

► R2D2 supersedes scalable competitors up to high acceleration:

On the transfer of technology to MRI

R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from accelerated radial k-space sampling with data-intensive multi-coil acquisitions.

► R2D2 supersedes scalable competitors up to high acceleration:

Conclusion & future work: more seriously

R2D2 offers a new regime of quality and speed in large-scale high-resolution high-dynamic range computational imaging in radio astronomy (but not only), paving the way towards ultra-fast acquisition and reconstruction.

Upcoming evolutions:

- Investigate R2D2 convergence and generalisability
- Add calibration and polarisation functionality

Python and Matlab code

Enjoy BASP's new Computational Imaging Library: BASPLib

Anything on black holes?

A bespoke R2D2-Net might come to light...

Ground truth

Linear scale visualisation

Linear scale visualisation

Linear scale visualisation

R2D2-Net

