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R2D2’S FAST PRECISION IMAGING
IN RADIO ASTRONOMY (BUT NOT ONLY)
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Computational imaging & modern challenges 2/18

Across science and technology, when observation gathers incomplete informa-
tion about an image, advanced computational imaging algorithms are needed
to transform data into images.

» Applications range from medicine or defence, to astronomy...
» Precision: unprecedented resolution and dynamic range regimes
» Scalability: extreme data volumes

» Robustness: uncertainty quantification, as well as calibration
functionalities (not discussed in this talk)

HERIOT

UNIVERSITY




Outline 3/18

@ COMPUTATIONAL IMAGING IN RADIO ASTRONOMY

. challenges & CLEAN

@ R2D2 ALGORITHM

... from DNN series to astronomical imaging (but not only)
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COMPUTATIONAL IMAGING IN RADIO
ASTRONOMY
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Aperture synthesis by radio interferometry 5/18

Aperture synthesis by radio interferometry (RI) provides access to high resolu-
tion high-dynamic range. But forming an image X from visibility data y is an
ill-posed inverse problem.

» The data provide an incomplete Fourier sampling of the sky, leading
to a deconvolution problem:

y=®x+n

» Reconstruction algorithms are needed, leveraging a prior image
model to regularise and solve the problem:

y — X

» Accurate image models are needed for precision and scalability
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The Square Kilometre Array 6/18

SKA will target unprecedented resolution and sensitivity regimes, leading to EB
data volumes and PB wide-band image sizes.

Image credit SKA organisation

» Reconstruction algorithms must be scalable
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Celebrated CLEAN 7/18

The standard CLEAN algorithm is a greedy matching pursuit algorithm, itera-
tively identifying model components from back-projected data residuals.

» Write backprojected data as convolution of X with PSF Re{®T®}§:

Xdirty = kRe{®Ty} ~ kRe{®TD}d « X + n’

with £ = 1/ max(Re{®'®}4)

» CLEAN iteration structure:

X(i) = X(iil) =+ T (Xdirty = HRE{¢T¢}X(i71))

with 7T~ peeling operator implicitly enforcing a sparse image model
» Simplistic model: scalable, but limiting precision

» Rl image reconstruction is to be reinvented
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R2D2 ALGORITHM
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R2D2: a learned version of CLEAN 9/ 18

Non satisfied with the highly iterative nature of optimisation algorithms, ham-
pering scalability, deep learning solutions are appealing.

r
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x* = N(xdirty)

» Purely data-driven DNNs do not generalise well.

» Unfolded DNNs do not scale well due to limitations in embedding
measurement operators in network architectures.
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R2D2: a learned version of CLEAN 9/ 18

R2D2 applies DNNs iteratively, each taking the previous iteration’s image esti-
mate and back-projected data residual as input, and reconstructing the residual
between the ground truth and the reconstruction of the previous iteration.

» R2D2 iteration structure:

x() = x(=1) Naj)(,(i—n’x(;—n)

with (=1 = x4y — KRe{®Td}x(~1)

> “Series” expression for x(:

= / i— i—
%2 x(0 = 32 N, (D, x(-)

» Training losses for N, sequence:

01 = arg mingiyego + Y1y lIxf — x4+ Ny (r ™, x4 |11
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R2D2: a learned version of CLEAN 9/ 18

[R2D2's high-dynamic range networks are trained from low-dynamic range]

databases, with flexibility in the underpinning network architecture.

» Creating a high-dynamic range database by exponentiating
low-dynamic range astronomical and medical image datasets:

v artefacts removal
v’ size adjustment

v/ exponentiation

Low-dynamic range Pre-processing
database database

High-dynamic range
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R2D2: a learned version of CLEAN 9/ 18

R2D2's high-dynamic range networks are trained from low-dynamic range
databases, with flexibility in the underpinning network architecture.

» U-Net architecture underpinning the first R2D2 incarnation (learned
version of Hégbom CLEAN):

1) 1) ‘ o (=1, 20=D)

rrrrrrrrrrrrrrrrr

ny Average Conv Ski
LeatrRolU 1| & olini transpose, 1x1Cony -»- XP
akyRel pooling | |\ VReLU connection
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R2D2: a learned version of CLEAN 9/ 18

R2D2's high-dynamic range networks are trained from low-dynamic range
databases, with flexibility in the underpinning network architecture.

> R2D2-Net architecture underpinning the second R2D2 incarnation,
aka R3D3 (learned version of Cotton-Schwab CLEAN):
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R2D2: RI training setting 10/ 18

[A first instance of R2D2 is specifically trained for VLA imaging. ]

» Groundtruth images:

v Exponentiated images with dynamic ranges in [10%,5 x 10]
v" 10k images with 512 x 512 pixels

» Observation model:
v 20k VLA sampling patterns with [0.2,2] million data points
V" Input SNR commensurate to image dynamic range
v’ Briggs weighting
v Super-resolution factor 1.5

4 L

1

A
Astronomical images Medical images
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R2D2: Rl simulation setting

11/ 18
[Our first instance of R2D2 is validated in simulation for VLA imaging. ]
» Groundtruth images:
v Real radio images with a dynamic range [103,5 x 10°]
v' 4 images with 512 x 512 pixels
» Observation model:
v 50 VLA sampling patterns with [0.2,2] million data points
v Input SNR commensurate to image dynamic range
v’ Briggs weighting
v Super-resolution factor 1.5
.vw | 28N
J . ' ~ . 74
. % ‘ - -
S « t
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R2D2: quantitative Rl simulation results 12/ 18

Quantitative metrics confirm R2D2 brings superior precision to AIRI and uS-
ARA... at a fraction of the cost.

» Simulation results:

Model SNR =+ std (dB) 1ogSNR =+ std (dB) t, £ std (sec) iteration #
CLEAN 13.6+3.6 10.3+3.5 65.9+14.2 9+1%
uSARA 30.8£1.9 21.9+3.3 4184.2+1548.9  1103+373
AIRI 31.3+23 21.9+4.4 3478.8+1531.4 5000+0.0*2
U-Net 20.5+2.7 6.6+3.3 1.1+0.1 1
R2D2-Net 33.7£1.7 24.0+£4.7 1.1+0.1 1
R2D2 33.7£15 25.0+4.9 2.94+0.3 15
R3D3 34.0+1.6 25.3+4.7 2.24+0.3 8

*1: number of “major cycles”
*p: max. iteration number systematically reached
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R2D2 trained for VLA: visual simulations results 13718

(Reconstruction results from simulated observations of the 3C353 source. )

» Model evolution across iterations for R2D2 incarnation with U-Net:

X N, (KO, x©)
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R2D2 trained for VLA: visual simulations results 13/18

(Reconstruction results from simulated observations of the 3C353 source. )

» Model evolution across iterations for R2D2 incarnation with U-Net:

X N, (FD, x) e
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R2D2 trained for VLA: visual simulations results 13/18

(Reconstruction results from simulated observations of the 3C353 source. )

» Model evolution across iterations for R2D2 incarnation with U-Net:

X(15) N, (39, x(19)) £(19)

L —
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R2D2: real imaging quiz 14 /18

Which methods hide behind these Cygnus A images formed from real VLA
observations?

» Dirty image (2.05GHz, 20MB data, 512 x 512 pixels):
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R2D2: real imaging quiz 14 /18

Which methods hide behind these Cygnus A images formed from real VLA
observations?

» Method #1 (2.05GHz, 20MB data, 512 x 512 pixels):

0.00099 0.003 0.0069 0.015 0.031 0.062 0.12 0.25 0.5
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R2D2: real imaging quiz 14 /18

Which methods hide behind these Cygnus A images formed from real VLA
observations?

» Method #2 (2.05GHz, 20MB data, 512 x 512 pixels):

0.00099 0.003 0.0069 0.015 0.031 0.062 0.12 0.25 0.5
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R2D2: real imaging quiz 14 /18

Which methods hide behind these Cygnus A images formed from real VLA
observations?

» Method #1: CLEAN

0.00099 0.003 0.0069 0.015 0.031 0.062 0.12 0.25 0.5
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R2D2: real imaging quiz 14 /18

Which methods hide behind these Cygnus A images formed from real VLA
observations?

> Method #2: R3D3

0.00099 0.003 0.0069 0.015 0.031 0.062 0.12 0.25 0.5
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On the R2D2 model uncertainty 15/ 18

Generating "R2D2 samples” from multiple series, trained from different random
initialisations, enables tracking model uncertainty.

» In few iterations only, model uncertainty decreases to very low levels:

=(i -(1 »(1
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On the R2D2 model uncertainty 15/ 18

Generating "R2D2 samples” from multiple series, trained from different random
initialisations, enables tracking model uncertainty.

» In few iterations only, model uncertainty decreases to very low levels:
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On the R2D2 model uncertainty 15/ 18

Generating "R2D2 samples” from multiple series, trained from different random
initialisations, enables tracking model uncertainty.

» In few iterations only, model uncertainty decreases to very low levels:
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On the transfer of technology to MRI 16/ 18

R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from ac-
celerated radial k-space sampling with data-intensive multi-coil acquisitions.

SNR (dB)

» R2D2 supersedes scalable competitors up to high acceleration:

SNR=16.60 dB
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On the transfer of technology to MRI 16/ 18

R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from ac-
celerated radial k-space sampling with data-intensive multi-coil acquisitions.

SNR (dB)

» R2D2 supersedes scalable competitors up to high acceleration:

SNR=17.54 dB
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On the transfer of technology to MRI 16/ 18

R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from ac-
celerated radial k-space sampling with data-intensive multi-coil acquisitions.

SNR (dB)

» R2D2 supersedes scalable competitors up to high acceleration:

SNR=22.25 dB

40 1 —¥— U-Net
38 | —~— R2D2-Net(FFT)
—e— R2D2

32 16 106 8 64 53 45 4

0.0 0.2 0.4 0.6 0.8 1.0

SNR vs Acceleration Factor (AF) Ground Truth magnitude R2D2 (AF=16, 29 coils)
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Conclusion & future work: more seriously 17 /18

R2D2 offers a new regime of quality and speed in large-scale high-resolution
high-dynamic range computational imaging in radio astronomy (but not only),
paving the way towards ultra-fast acquisition and reconstruction.

Upcoming evolutions:

@ |nvestigate R2D2 convergence and generalisability
@ Add calibration and polarisation functionality

Python and Matlab code
@ Enjoy BASP's new Computational Imaging Library: BASPLib

Anything on black holes?
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https://basp-group.github.io/BASPLib/index.html

QOops... yes... something on black holes 18/ 18

[A bespoke R2D2-Net might come to light... ]

Ground truth uSARA R2D2-Net

Linear scale visualisation Linear scale visualisation Linear scale visualisation
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