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2 / 18Computational imaging & modern challenges
Across science and technology, when observation gathers incomplete informa-
tion about an image, advanced computational imaging algorithms are needed
to transform data into images.

▶ Applications range from medicine or defence, to astronomy...

Challenges:

▶ Precision: unprecedented resolution and dynamic range regimes

▶ Scalability: extreme data volumes

▶ Robustness: uncertainty quantification, as well as calibration
functionalities (not discussed in this talk)
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☛ Computational imaging in radio astronomy

... challenges & CLEAN

☛ R2D2 algorithm

... from DNN series to astronomical imaging (but not only)
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Computational imaging in radio
astronomy



5 / 18Aperture synthesis by radio interferometry
Aperture synthesis by radio interferometry (RI) provides access to high resolu-
tion high-dynamic range. But forming an image x̂ from visibility data y is an
ill-posed inverse problem.

▶ The data provide an incomplete Fourier sampling of the sky, leading
to a deconvolution problem:

y = Φx̂ + n

▶ Reconstruction algorithms are needed, leveraging a prior image
model to regularise and solve the problem:

y → x̂

▶ Accurate image models are needed for precision and scalability



6 / 18The Square Kilometre Array
SKA will target unprecedented resolution and sensitivity regimes, leading to EB
data volumes and PB wide-band image sizes.

Image credit SKA organisation

▶ Reconstruction algorithms must be scalable



7 / 18Celebrated CLEAN
The standard CLEAN algorithm is a greedy matching pursuit algorithm, itera-
tively identifying model components from back-projected data residuals.

▶ Write backprojected data as convolution of x̂ with PSF Re{Φ†Φ}δ:

xdirty = κRe{Φ†y} ≃ κRe{Φ†Φ}δ ⋆ x̂ + n′

with κ = 1/ max(Re{Φ†Φ}δ)

▶ CLEAN iteration structure:

x(i) = x(i−1) + T
(

xdirty − κRe{Φ†Φ}x(i−1)
)

with T peeling operator implicitly enforcing a sparse image model

▶ Simplistic model: scalable, but limiting precision

▶ RI image reconstruction is to be reinvented
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R2D2 algorithm
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9 / 18R2D2: a learned version of CLEAN
Non satisfied with the highly iterative nature of optimisation algorithms, ham-
pering scalability, deep learning solutions are appealing.

N

x⋆ = N(xdirty)

▶ Purely data-driven DNNs do not generalise well.
▶ Unfolded DNNs do not scale well due to limitations in embedding

measurement operators in network architectures.



9 / 18R2D2: a learned version of CLEAN
R2D2 applies DNNs iteratively, each taking the previous iteration’s image esti-
mate and back-projected data residual as input, and reconstructing the residual
between the ground truth and the reconstruction of the previous iteration.

▶ R2D2 iteration structure:

x(i) = x(i−1) + N
θ̂(i)(r (i−1), x(i−1))

with r (i−1) = xdirty − κRe{Φ†Φ}x(i−1)

▶ “Series” expression for x(I):

x̂ ≜ x(I) =
∑I

i=1 N
θ̂(i)(r (i−1), x(i−1))

▶ Training losses for N
θ̂(i) sequence:

θ̂(i) = arg minθ(i)∈RQ
1
L

∑L
l=1 ∥x⋆

l − [x(i−1)
l + Nθ(i)(r (i−1)

l , x(i−1)
l )]+∥1



9 / 18R2D2: a learned version of CLEAN
R2D2’s high-dynamic range networks are trained from low-dynamic range
databases, with flexibility in the underpinning network architecture.

▶ Creating a high-dynamic range database by exponentiating
low-dynamic range astronomical and medical image datasets:

Low-dynamic range
database

✓ artefacts removal

✓ size adjustment

✓ exponentiation

Pre-processing High-dynamic range
database



9 / 18R2D2: a learned version of CLEAN
R2D2’s high-dynamic range networks are trained from low-dynamic range
databases, with flexibility in the underpinning network architecture.

▶ U-Net architecture underpinning the first R2D2 incarnation (learned
version of Högbom CLEAN):
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9 / 18R2D2: a learned version of CLEAN
R2D2’s high-dynamic range networks are trained from low-dynamic range
databases, with flexibility in the underpinning network architecture.

▶ R2D2-Net architecture underpinning the second R2D2 incarnation,
aka R3D3 (learned version of Cotton-Schwab CLEAN):
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10 / 18R2D2: RI training setting
A first instance of R2D2 is specifically trained for VLA imaging.

▶ Groundtruth images:
✓ Exponentiated images with dynamic ranges in [103, 5 × 105]
✓ 10k images with 512 × 512 pixels

▶ Observation model:
✓ 20k VLA sampling patterns with [0.2, 2] million data points
✓ Input SNR commensurate to image dynamic range
✓ Briggs weighting
✓ Super-resolution factor 1.5

Astronomical images Medical images



11 / 18R2D2: RI simulation setting
Our first instance of R2D2 is validated in simulation for VLA imaging.

▶ Groundtruth images:
✓ Real radio images with a dynamic range [103, 5 × 105]
✓ 4 images with 512 × 512 pixels

▶ Observation model:
✓ 50 VLA sampling patterns with [0.2, 2] million data points
✓ Input SNR commensurate to image dynamic range
✓ Briggs weighting
✓ Super-resolution factor 1.5

3c353 M106 PSZ2 G165.68+44.01 ACO 2034



12 / 18R2D2: quantitative RI simulation results
Quantitative metrics confirm R2D2 brings superior precision to AIRI and uS-
ARA... at a fraction of the cost.

▶ Simulation results:

Model SNR ± std (dB) logSNR ± std (dB) ttot ± std (sec) iteration #
CLEAN 13.6±3.6 10.3±3.5 65.9±14.2 9±1∗1

uSARA 30.8±1.9 21.9±3.3 4184.2±1548.9 1103±373
AIRI 31.3±2.3 21.9±4.4 3478.8±1531.4 5000±0.0∗2

U-Net 20.5±2.7 6.6±3.3 1.1±0.1 1
R2D2-Net 33.7±1.7 24.0±4.7 1.1±0.1 1
R2D2 33.7±1.5 25.0±4.9 2.9±0.3 15
R3D3 34.0±1.6 25.3±4.7 2.2±0.3 8

∗1: number of “major cycles”
∗2: max. iteration number systematically reached



13 / 18R2D2 trained for VLA: visual simulations results
Reconstruction results from simulated observations of the 3C353 source.

▶ Model evolution across iterations for R2D2 incarnation with U-Net:

x(1) N
θ̂(1)(r (0), x(0)) r (0)

Log scale visualisation Log scale visualisation Linear scale visualisation



13 / 18R2D2 trained for VLA: visual simulations results
Reconstruction results from simulated observations of the 3C353 source.

▶ Model evolution across iterations for R2D2 incarnation with U-Net:

x(2) N
θ̂(2)(r (1), x(1)) r (1)

Log scale visualisation Linear scale visualisation Linear scale visualisation



13 / 18R2D2 trained for VLA: visual simulations results
Reconstruction results from simulated observations of the 3C353 source.

▶ Model evolution across iterations for R2D2 incarnation with U-Net:

x(15) N
θ̂(15)(r (14), x(14)) r (14)

Log scale visualisation Linear scale visualisation Linear scale visualisation



14 / 18R2D2: real imaging quiz
Which methods hide behind these Cygnus A images formed from real VLA
observations?

▶ Dirty image (2.05GHz, 20MB data, 512 x 512 pixels):



14 / 18R2D2: real imaging quiz
Which methods hide behind these Cygnus A images formed from real VLA
observations?

▶ Method #1 (2.05GHz, 20MB data, 512 x 512 pixels):



14 / 18R2D2: real imaging quiz
Which methods hide behind these Cygnus A images formed from real VLA
observations?

▶ Method #2 (2.05GHz, 20MB data, 512 x 512 pixels):



14 / 18R2D2: real imaging quiz
Which methods hide behind these Cygnus A images formed from real VLA
observations?

▶ Method #1: CLEAN (2.05GHz, 20MB data, 512 x 512 pixels):



14 / 18R2D2: real imaging quiz
Which methods hide behind these Cygnus A images formed from real VLA
observations?

▶ Method #2: R3D3 (2.05GHz, 20MB data, 512 x 512 pixels):



15 / 18On the R2D2 model uncertainty
Generating “R2D2 samples” from multiple series, trained from different random
initialisations, enables tracking model uncertainty.

▶ In few iterations only, model uncertainty decreases to very low levels:

[σ/µ](x̄(i)) µ(x̄(1)) [σ/µ](x̄(1))

SNR=19.5 dB, logSNR=10.2 dB Mean=0.0537

Log scale visualisation Log scale visualisation



15 / 18On the R2D2 model uncertainty
Generating “R2D2 samples” from multiple series, trained from different random
initialisations, enables tracking model uncertainty.

▶ In few iterations only, model uncertainty decreases to very low levels:

[σ/µ](x̄(i)) µ(x̄(3)) [σ/µ](x̄(3))

SNR=35.0 dB, logSNR=29.2 dB Mean=0.0139

Log scale visualisation Log scale visualisation



15 / 18On the R2D2 model uncertainty
Generating “R2D2 samples” from multiple series, trained from different random
initialisations, enables tracking model uncertainty.

▶ In few iterations only, model uncertainty decreases to very low levels:

[σ/µ](x̄(i)) µ(x̄(12)) [σ/µ](x̄(12))

SNR=37.7 dB, logSNR=35.3 dB Mean=0.0023

Log scale visualisation Log scale visualisation



16 / 18On the transfer of technology to MRI
R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from ac-
celerated radial k-space sampling with data-intensive multi-coil acquisitions.

▶ R2D2 supersedes scalable competitors up to high acceleration:

SNR=16.60 dB

SNR vs Acceleration Factor (AF) Ground Truth magnitude U-Net (AF=16, 29 coils)



16 / 18On the transfer of technology to MRI
R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from ac-
celerated radial k-space sampling with data-intensive multi-coil acquisitions.

▶ R2D2 supersedes scalable competitors up to high acceleration:

SNR=17.54 dB

SNR vs Acceleration Factor (AF) Ground Truth magnitude R2D2-Net(FFT) (AF=16, 29 coils)



16 / 18On the transfer of technology to MRI
R2D2 transfers seamlessly to MRI, enabling accurate reconstruction from ac-
celerated radial k-space sampling with data-intensive multi-coil acquisitions.

▶ R2D2 supersedes scalable competitors up to high acceleration:

SNR=22.25 dB

SNR vs Acceleration Factor (AF) Ground Truth magnitude R2D2 (AF=16, 29 coils)



17 / 18Conclusion & future work: more seriously
R2D2 offers a new regime of quality and speed in large-scale high-resolution
high-dynamic range computational imaging in radio astronomy (but not only),
paving the way towards ultra-fast acquisition and reconstruction.

Upcoming evolutions:

☛ Investigate R2D2 convergence and generalisability

☛ Add calibration and polarisation functionality

Python and Matlab code

☛ Enjoy BASP’s new Computational Imaging Library: BASPLib

Anything on black holes?

https://basp-group.github.io/BASPLib/index.html


18 / 18Oops... yes... something on black holes

A bespoke R2D2-Net might come to light...

Ground truth uSARA R2D2-Net

Linear scale visualisation Linear scale visualisation Linear scale visualisation
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