SKACH

Square Kilometer Array Swiss project (SKACH) 2024 spring meeting MID band 6 instrument EBB Status and progress

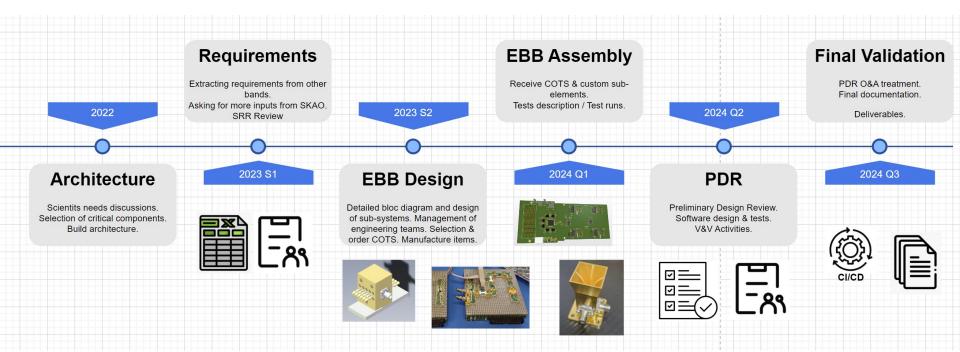
Hes·so

Haute Ecole Spécialisée de Suisse occidentale

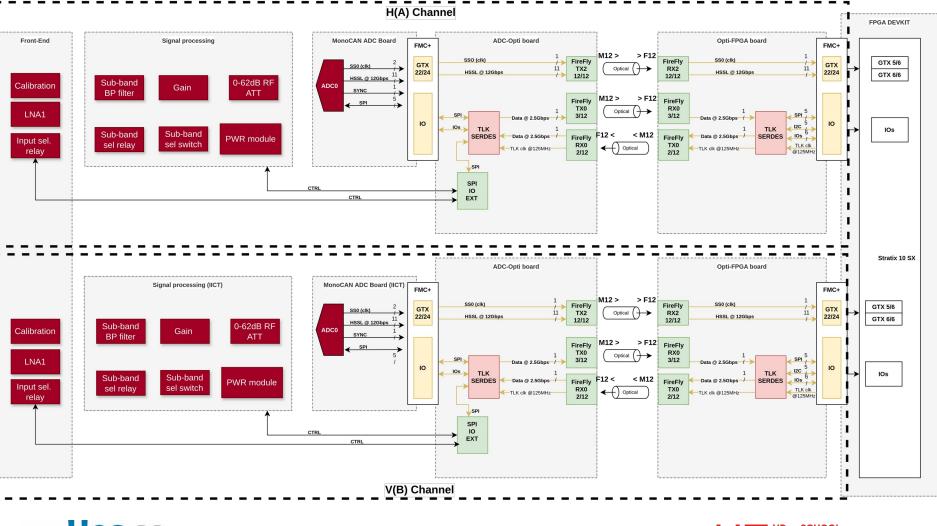
Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland Biotech Campus (UniGE) Geneva 03.09.2024

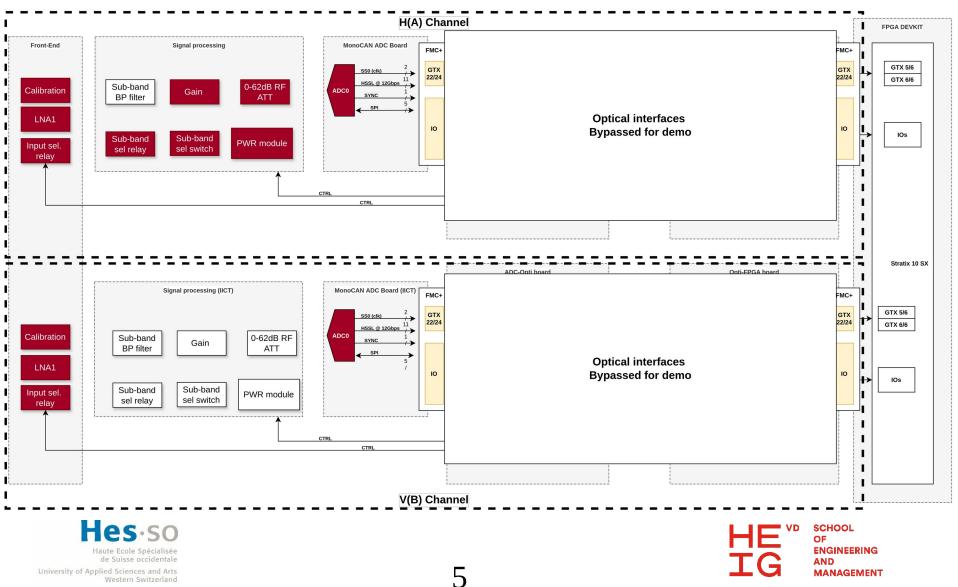
SCHOOL OF ENGINEERING AND MANAGEMENT


Mid-band 6: presentation outline

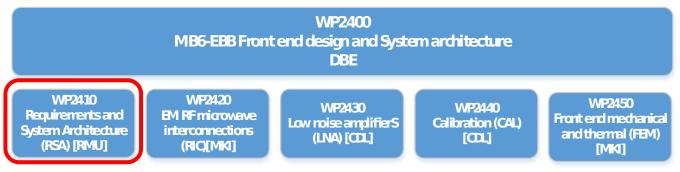
- Brief reminder of overall project
- Status of EBB
- EBB demo
- Next actions
- Activities in other projects



L

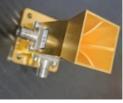

L

I

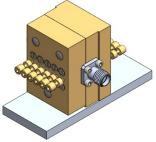

L

SKACH Block diagram: Mid-band 6 receiver demo vs EBB

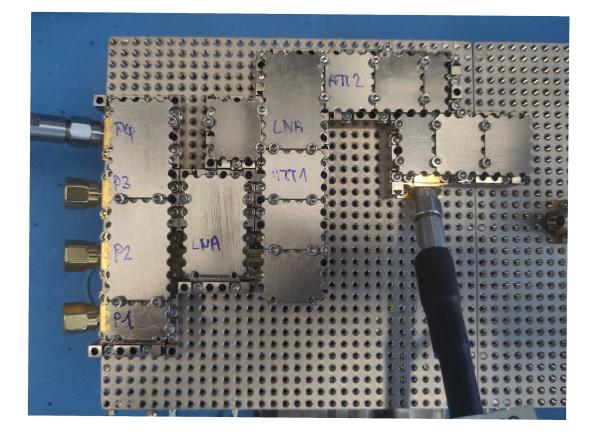
- WP2410:
 - System requirements review SRR
 - Noise model and analysis
 - Electronics (Horn output to ADC)
 - Rough model (excel file) for ambient temp EBB
 - (-) Fine model with frequency caracteristics of subsystems
 - Antenna noise
 - 🕘 Sky and earth noise
 - Need geometrical model of full dish + imperfections
 - Collaboration needed
 - Science requirements
 - For EBB
 - 👗 For EM



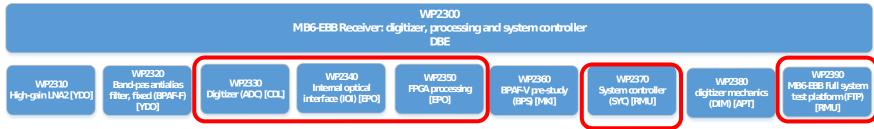
- WP?420: front end assembled
 - \square Assembled and tested to be functional
- WP2430: LNA1 validated in front end
 Gain 27-28dB, functionally tested
 - Gain 27-28dB, functionally tested
- WP2440: calibration white noise source
 - Functional
 - Connection via coaxial relay : functional
- WP2450: For the EBB, mechanical design implemented for demo



- WP2310: Second LNA needs a lot of gain (56dB)
 - ☑ Diramics MMIC in initially two amplifiers, achieved gain 51dB
 - Added 3rd stage of MMIC
 - X-MW based build **updated and functional**
- WP2320: fixed band-pass anti-alias filter for selecting the 2.5GHz subbands (1 in 4)
 - HEIG-VD design for adjustable filters for sub-bands ("almost" design for 4 bands, same principle of operation as for variable WP2360 but screw-adjusted
 - Mechanical parts being manufactured (due 9.9.2024)
 - 4:1 sub-band switches functional
 - solid-state X-MW (filter output)
 - Coaxial relays (filter input) with high-side switches
 - Parallel or SPI drive



Digitizer 2/3 analog design (WP2310+20)

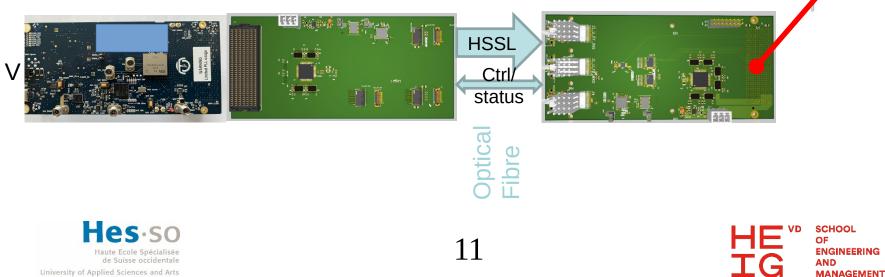


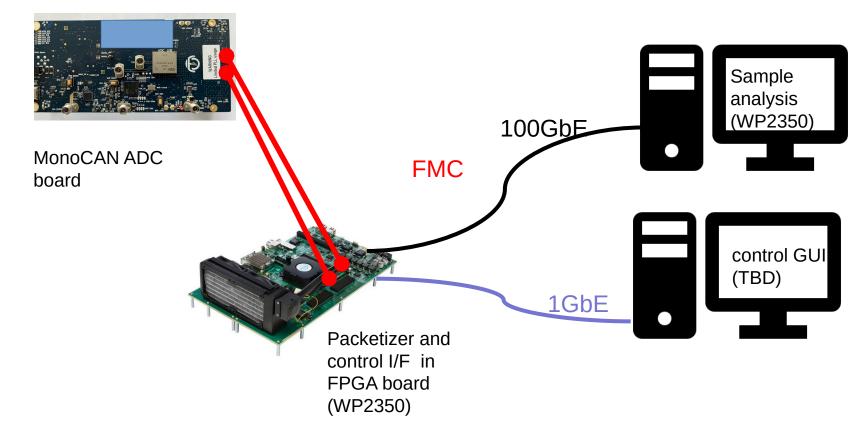
- "LNA2"
- X-Microwave prototyping
 - agile HW !
- Switching of BP filters
- large variable gain (..51dB)
- Uses same Diramics amplifiers as LNA1 (low power)

• WP2330 ADC:

SKACH

- 2 MonoCAN single ADC board **functional in demo**
- 🔼 Synchronisation work to be done, but no additional HW is required to sync
- WP2340: optical Links
 - Schematic and PCB design
 - 🔼 In fabrication
- WP2350 FPGA packetizer:
 - FPGA eval board (Stratix 10 SX) operational
 - HDL code validated data from ADC out to 100GB ethernet at up to 11.5GSamples/s (margin, 92gb/s out)
 - Design of control system through the fiber
- WP 2370 SYC system controller:
 - architectural decision 🗆 NOT USING processor core on FPGA
 - State machine on FPGA
 - 📥 PC GUI will control FPGA




MonoCAN ADC board (WP2330): Integrating 2x single ADC eval board in system, distributing 1 CLK [] 2 channels, phase compensation, uC FW adaptation

Electrical-optical-electrical boards (WP2340): enabling HS data transfer and control of digitizer and front end **through optical fibre** Packetizer control I/F in FPGA board (WP2350)

University of Applied Sciences and Arts Western Switzerland

ADC-FPGA integration test @REDS (WP2350)

· + + + + + + ,

SKACH

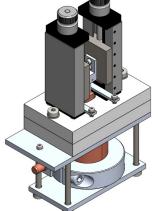
SCHOOL

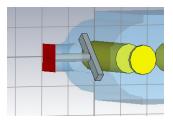
ENGINEERING

MANAGEMENT

OF

AND


HE IG



WP2360 EBB variable filter pre-study 1/2

Demo

- Single cavity PoC as preparatory work for future full filter (Proof of Concept)
- PoC scaled down 8:1 in frequency
 - 1.9-3.1GHz
 - Single cell resonator
 - Single coaxial interface (SMA)
 - Actuators for frequency and coupling factor are commercial micrometric screws
 - Will enable studying effect of temperature variations etc.
 - Will be used in radioblocks
 - As RFI filters
 - to continue development of a multi-cavity filter tunable filter
 - Study upper modes in an easier way (same filter size used 3-4x higher in frequency)

Mid-band 6: Next actions in SKACH

SCHOOL OF

AND

ENGINEERING

MANAGEMENT

- Finalize development of EBB
- PDR june 2024
 - Designs of all subsystems
 - Documentation notably:
 - Design, Test, Risk, Quality ("SKAO-compatible")
- demo operational 2024-09
- EBB operational 2024-10
- documentation
- End of project: 2024 anyway!!!

External collaborations

- Radioblocks, Horizons Europe
 - **30+** partners (MPIfR, IRAM, EVN, JIVE, ASTRON, EPFL...)
 - Project meeting in Madrid June 4-6
 - Blocks" for radio-astronomy
 - Technological goals
 - (industry collaboration **difficult**)
 - Opensource the results (as much as possible)
 - WP2 (front-end): HES-SO: Bandstop/notch filters
 - For radio-frequency interference (RFI) rejection/attenuation
 - Use of upper modes of the filter cavities ==> automotive radar 77GHz
 - **NEW** Collaboration with Yebes Observatory (SP) on RFI filters
 - Tune high-temp superconductor (YbaCuO) filter (70K)
 - Cavity filter operating in cryo (20K)
 - Evaluate feasibility of superconductive (8K) RFI filters (bandpass, bandblock)
 - WP3 (innovative digitizers): HES-SO: passband digitizer
 - 5 to 7-cavity mechanically tuned bandpass filter
 - Digitizer :
 - Integrate digitizer in instrument for MPIfR (Bonn) (optical fibre front-end control)
 - 100GbÉ on FPGA and data sync (INAF, Cagliari)
 - SKC-EBB Digitizer as (lab) measurement instrument for Chalmers (SE)
- Trying to leverage this for future SKAO MidBand 6 Engineering Model!

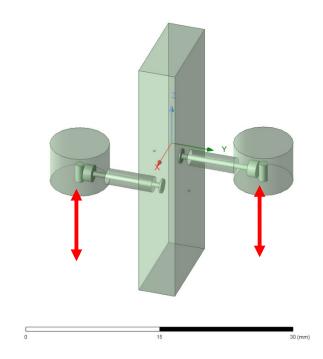
Mid-band 6: industrial colaboration

SCHOOL OF

AND

ENGINEERING

MANAGEMENT


- Innosuisse project:
 - Tried with 3 companies, not interested
 - No "bandwidth" available
 - Too long term
 - Too risky
 - Despite (potential) high return
 - Still trying to find swiss partners
 - Refactor for quantum?
- Collaboration with ADC manufacturer
 - Interested in a demonstrator with optical interface
 - showcasing radio-astronomy applications
 - Other science applications
 - Write common paper

Single/multiple notch filter for ambient temperature (WVR)

- First «proof of principle» simulations : 18-22GHz range for notch frequency, WR51 waveguide with SMA transitions
- Coupling using coaxial and pigtail
- Single cell, scalable for multiple
- Retrofittable on existing WG
- Goal : setting for frequency through micro-stepper motor with ~1um resolution
- Coupling factor

An interesting feature of the ADC

- "Mid-band 6" ADC "magnifier"
 - 0-40GHz analog range
 - 6.4-12.8 sampling rate
 - 2.5-4GHz raw bandwidth around any center frequency in range
 - BUT it has internal digital circuitry
 - DDC digital down-converters
 - 4 available on chip, none used now for SKAO
 - Decimation ratio 2 to 1024
 - One could be used for 2.5GHz bandwidth (additional filtering)
 - Enable "zooming into signals" with up to few MHz bandwidth

SCHOOL OF

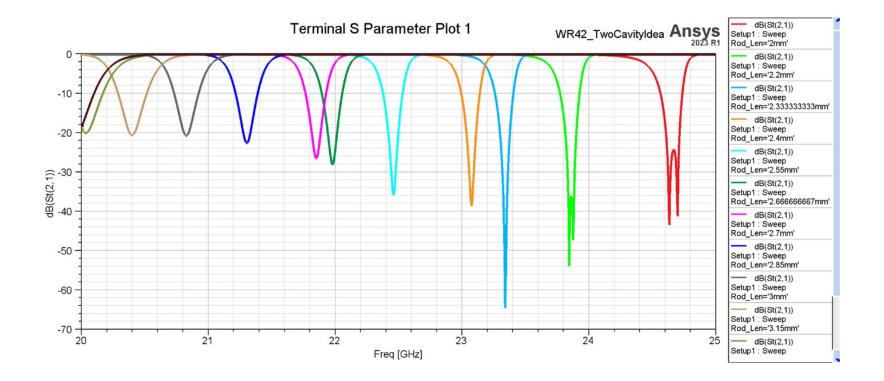
AND

ENGINEERING

MANAGEMENT

- Potential uses?
 - Astrochemistry
 - "low-doppler"
 - SETI
- Integration into SKA architecture may be difficult
- .

SKACH Mid-band 6: the SKACH dream team


	Micro- wave	Digital design	Electroni cs	SW	Mech. design	EM design	Mech. Assembl y	Purchasi ng	System design	PM+ doc
GMH			X					X		X
ADI		Х							Х	Х
MKI						Х				
MAF						Х				
ACS		Х		Х						
YNG		Х	X							
CDL	Х								Х	
EPO									Х	
YDO	Х				Х		X			
MLS					X		X			
PCZ					Х			Х		Х
DBE	Х				Х				Х	Х
JCZ							Х	Х		
WHN	SxSO Ecola Spácialisáa							H		OL EERING
de S University of Applied	Suisse occidentale Sciences and Arts		I I		1	1	1	T	AND	GEMENT

University of Applied Sciences and Arts Western Switzerland

First simulations 20-25GHz

Frequency responses : 20um "plunger" difference allow 100MHz bandblock

- Phase Array Feeds 2024, @ BYU, Provo, UT, USA (near Salt Lake City)
- Interesting presentations about ongoing projects
- (http://csas.ee.byu.edu/PAF2024/)
 - L/S band PAFs
 - L-band ALPACA for Greenbank RT (BYU, Cornell)
 - L/S band 100-channel PAF for Effelsberg (MPIfR)
 - Back-ends
 - CASPER instrumentation
 - Dielectric antenna beamformers??
 - Visit of ALPACA lab at BYU
 - No coffee, no tea...
 - Presented our work on filters and digitizers
 - Showed the interest for of direct conversion for higher bands
 - Direct conversion receiver more scalable than heterodyne receivers
 - Digital optical transmission instead of RfoF enables different architectures
 - Issues with antenna arrays
 - Compact beamformers leave little space $d_{opt} = \lambda/2$
 - Sparse arrays are less efficient and present high fringes
 - Multiband is even more challenging
 - However ALMA has PAFs with much higher spacing
 - To be researched
 - Future applications

