



# HIRAX - Overview and Status

#### Jennifer Studer, ETHZ Cosmology Group SKA Days 2024

Alexandre Refregier, Devin Crichton, Thierry Viant, Corrie Ungerer, Kavilan Moodley





Credit: D. Crichton et al. (2022)

#### **HIRAX** Overview

- Hydrogen Intensity and Real-time Analysis eXperiment
- Radio interferometer with a compact, redundant layout









#### **HIRAX** Overview

- Hydrogen Intensity and Real-time Analysis eXperiment
- Radio interferometer with a compact, redundant layout



HIRAX



## **HIRAX** Overview

- Hydrogen Intensity and Real-time Analysis eXperiment
- Radio interferometer with a compact, redundant layout
- To be co-located with SKA in the Karoo, South Africa
- Funded up to 256 element deployment. Plans to extend to 1024.
- 6 m diameter dishes instrumented to operate between 400–800 MHz / z = 0.8-2.6
- Intensity mapping survey of  $\sim \frac{1}{3}$  of the sky over 4 years
- Field of view: 5°-10°
- Primary Science Goals:
  - Observationally probe the evolution of dark energy
  - Survey the transient radio sky





 $\lambda = 21cm$ 



#### **HIRAX Site**

- Guest instrument on SKA site in the Karoo, South Africa
- Low RFI (radio frequency interference) site protected by government regulations
- Access to roads, power supply, external network connection, and SKA infrastructure



#### **HIRAX Schematic**





### **HIRAX Dish Production**

#### **Reflector Plug**

- Manufactured in two halves
- Manufactured and measured in Cape Town
- Combined, measured and finished in Carnarvon







#### **Reflector Mold**

- Half molds manufactured and measured in Cape Town
- 4 molds for main dishes

#### **Reflector Dish**

- First half dish prototype measured
- First 2 prototypes planned in October/November
- Fiberglass with an embedded aluminium mesh



#### **Telescope Mechanical Assembly - Fibreglass**





Backing ring mould



Backing ring built on a mould





Scalar model of plug and mould



Feedleg assembly jig



Feed assembly jig



# First assembled Dish

addina a succession of the suc

First Split Dish; Cape Town, June 2024

#### **Systematics**

- Foreground highly dominates
  - Smooth in frequency
  - HI is correlated over small ranges in frequency
  - Instrument systematics are frequency dependent
- Imperfect knowledge of the instrument leads to foreground leakage
- Need instrument with very low systematics and a very good understanding of it



#### **Systematics**

**ETH** zürich

- Foreground highly dominates
  - Smooth in frequency
  - HI is correlated over small ranges in frequency
  - Instrument systematics are frequency dependent
- Imperfect knowledge of the instrument leads to foreground leakage
- Need instrument with very low systematics and a very good understanding of it



more in Devin's talk

#### **Instrument Requirements**

|    | _ |    |       |              |
|----|---|----|-------|--------------|
| EI | H | 71 | Iri   | ch           |
|    |   |    | • • • | $\mathbf{C}$ |

| Telescope mechanical parameter                       | <b>Target precision (RMS)</b> |  |
|------------------------------------------------------|-------------------------------|--|
| Receiver position relative to focus                  | 0.5 mm                        |  |
| Receiver orientation relative to boresight vector    | 2.5' polar and azimuthal      |  |
| Dish surface deviations                              | 1 mm                          |  |
| Dish vertex position relative to elevation axis      | 1 mm                          |  |
| Orthogonality of boresight vector and elevation axis | 1'                            |  |
| Elevation axis position within the array             | 0.5 mm in array plane         |  |
|                                                      | 1 mm out of array plane       |  |
| Elevation axis alignment within the array            | 1'                            |  |
| Elevation pointing angle                             | 1′                            |  |

 Table 4 Target precision values for HIRAX telescope mechanical structure

## Measurement Equipment to Characterize the Dish

- Laser tracker
  - $\circ$  Very dense point cloud
  - $\circ$  ~ 1-2 hours/dish

- Photogrammetry system
  - Medium dense point cloud
  - $\circ$  < hour/dish
  - Survey over time

- Reflectometer
  - Very sparse point density
  - $\circ$  ~ 3 hours/dish
  - Measures the actual EM surface relative to the dish surface





#### Laser Tracker



Measurement procedure:

- 1. Sweep the reflector over the surface of the device under test while the laser tracker tracks it
- 2. Analyze the resulting 3D point cloud





### Photogrammetry System



Measurement procedure:

- 1. Glue coded and uncoded targets
- 2. Take pictures from different angles
- 3. Feed the pictures into the software to get the 3D point cloud





#### Reflectometer



Tracks distance offset through shifting resonant frequency

Measurement procedure:

- 1. Calibrate with aluminium mesh
- 2. Take measurements at locations of interest
  - a. Measure the arc length/height
- 3. Analyze data





## Transport from OmegaVerse to Carnarvon Effect on Plug



#### The **RMS** value is **0.123 mm < 0.6 mm** The **focal length** is **1260.0 mm**



The **RMS** value is **0.510 mm < 0.6 mm** The **focal length** is **1260.7 mm** 

with the support of Keshav Bechoo, Tasmiya Papiah, Thierry Viant, and others

#### Plug Improvement





with the support of Keshav Bechoo, Tasmiya Papiah, Thierry Viant, and others

#### Calibration





## Drone Beam Mapping and Holography

- Drone mounted transmitter for direct beam mapping of
- Test flights at Bleien Observatory in Switzerland
  - Also with other groups at Green Bank CHIME outrigger and DRAO
- Multiple parallel efforts
- Exploring feasibility of flights at Karoo site
  - RFI characterisation and testing
- Comparing with holography and metrology based reconstruction



Christian Monstein, Thierry Viant, Tony Walters, Tasmiya Papiah and others









## Klerefontein test side ready in October!

Klerefontein, June 2024

#### Conclusions

- HI IM provides access to large cosmological volumes
- Systematics need to be controlled
  - Focus on the dish surface / primary beam
- Manufacturing process is in progress
  - Plug is ready for production
- Propagate dish surface deviations into beams
  - Understand the effects and combine with other methods
  - Enable the mitigation of systematics in the HI IM measurement to constrain cosmological parameters
- HIRAX will have first light in 2025



### **RMS Error Propagation**



- 2.0

- 1.0

- 0.5

- 0.0

-0.5

-1.0

-1.5

-2.0

23

