Scattering-transform-based Galaxy Classification and Image Generation

markus.bredberg@epfl.ch PhD student, LASTRO, EPFL, Supervisor: Emma Tolley 10th of June 2024

I hope to ease this transition to machine learning

Goals:

- Generate mock catalogues for ML classification
- Improve classification of galaxies and radio emission
- Image reconstruction and remove artefacts or noise in an image
- **Spillover**: methods can be used for other aims

Machine learning is not human learning

Large-scale computing is expensive Average annual CO2 emission per astronomer (in ton)

Machine learning is not human learning

What's in the black box?

The scattering transform: an alternative to Fourier transforms and neural networks

The scattering transform: an alternative to Fourier transforms and neural networks

Wavelet transform

Scattering transform

$$WX = X \star \Psi_j(t)$$
$$SX = W|WX|$$

Wavelet transform

Scattering transform

 $WX = X \star \Psi_j(t)$ SX = W|WX|

Zeroth order First order Second order n-th order
$$\begin{split} S_{0} &= X \star \Phi \\ S_{1}(j_{1}, l_{1}) &= \langle |X \star \Psi_{j_{1}, l_{1}}| \star \Phi \rangle \\ S_{2}(j_{1}, j_{2}, l_{1}, l_{2}) &= \langle ||X \star \Psi_{j_{1}, l_{1}}| \star \Psi_{j_{2}, l_{2}}| \star \Phi \rangle \\ S_{n}(j_{1}, j_{2}, ..., l_{n}, l_{n}) &= \langle ||X \star \Psi_{j_{1}, l_{1}}| \star ... | \star \Psi_{j_{n}, l_{n}}| \star \Phi \rangle \end{split}$$

Wavelet transform

Scattering transform

Most diffuse energy Zeroth order First order Second order n-th order $WX = X \star \Psi_j(t)$ SX = W|WX|

 $S_{0} = X \star \Phi$ $S_{1}(j_{1}, l_{1}) = \langle |X \star \Psi_{j_{1}, l_{1}}| \star \Phi \rangle$ $S_{2}(j_{1}, j_{2}, l_{1}, l_{2}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star \Psi_{j_{2}, l_{2}}| \star \Phi \rangle$ $S_{n}(j_{1}, j_{2}, ..., l_{n}, l_{n}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star ...| \star \Psi_{j_{n}, l_{n}}| \star \Phi \rangle$

Wavelet transform

Scattering transform

Most diffuse energy Second order n-th order $WX = X \star \Psi_j(t)$ SX = W|WX|

order $S_{0} = X \star \Phi$ order $S_{1}(j_{1}, l_{1}) = \langle |X \star \Psi_{j_{1}, l_{1}}| \star \Phi \rangle$ order $S_{2}(j_{1}, j_{2}, l_{1}, l_{2}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star \Psi_{j_{2}, l_{2}}| \star \Phi \rangle$ order $S_{n}(j_{1}, j_{2}, ..., l_{n}, l_{n}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star ...| \star \Psi_{j_{n}, l_{n}}| \star \Phi \rangle$ Scale (1-J) Direction (1-L)

Wavelet transform

Scattering transform

Most diffuse energy Zeroth order First order Second order n-th order $WX = X \star \Psi_j(t)$ SX = W|WX|

 $S_{0} = X \star \Phi$ $S_{1}(j_{1}, l_{1}) = \langle |X \star \Psi_{j_{1}, l_{1}}| \star \Phi \rangle$ $S_{2}(j_{1}, j_{2}, l_{1}, l_{2}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star \Psi_{j_{2}, l_{2}}| \star \Phi \rangle$ $S_{n}(j_{1}, j_{2}, ..., l_{n}, l_{n}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star ...| \star \Psi_{j_{n}, l_{n}}| \star \Phi \rangle$

Scale (1-J)

Direction (1-L)

Wavelet transform

Scattering transform

Most diffuse energy Zeroth order First order Second order n-th order $WX = X \star \Psi_j(t)$ SX = W|WX|

 $S_{0} = X \star \Phi$ $S_{1}(j_{1}, l_{1}) = \langle |X \star \Psi_{j_{1}, l_{1}}| \star \Phi \rangle$ $S_{2}(j_{1}, j_{2}, l_{1}, l_{2}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star \Psi_{j_{2}, l_{2}}| \star \Phi \rangle$ $S_{n}(j_{1}, j_{2}, ..., l_{n}, l_{n}) = \langle ||X \star \Psi_{j_{1}, l_{1}}| \star ...| \star \Psi_{j_{n}, l_{n}}| \star \Phi \rangle$

Scale (1-J)

Direction (1-L)

The scattering transform reproduces field types

Cheng & Ménard, 2021, arXiv:2112.01288v1

I want to generate similar galaxies

I want to generate similar galaxies

Scattering transform

Methods

Four datasets have been used

Input data	MNIST	Mirabest	FIRST	Galaxy10			
Image size	28x28	150x150	300x300	3x256x256			
Number of samples per class	6000	~500	~500	~1000			
Example images	0 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9		· · · · · · · · · · · · · · · · · · ·	Daturbel Nerging Neurof Snooth In-Setteren Round Snooth Cape Round Snooth Barnel Spinal Unbarnel Tajd Spiral Unbarnel Lose Spiral Cepe on without Bulge Spiral Unbarnel Lose Spiral			
# of classes	10	2	4	10			
Source	Deng 2012, doi.org/10.1109/MSP. 2012.2211477	Porter & Scaife 2023, arXiv:2305.11108 v1	Griese et al. 2023, doi.org/10.1016/j.d ib.2023.108974	Lintott et al. 2011, arXiv:1007.3265			

Classifier - Method

Markus Bredberg, Jiaxin Guo, Han Zhang

STMLP: 99:25%

No hidden layers!

STMLP: 99:25%

Smaller, faster, more stable and interpretable, better at small datasets

No hidden layers!

Generator: Loss-based - Method

Generator: Loss-based - Results

36

3. Method for variational autoencoder

3. Method for variational autoencoder

3. I used five different variational autoencoders

Architectu (with batc normalisati and dropou

	Image MLP 32, 32, 32		2	Scatter MLP		Image CNN 32, 32, 32		Scatter CNN		Scatter + image CNN			
Architecture (with batch normalisation and dropout)	Decoder Encoder	64, 16, 1	6			64, 16, 16		217, 8, 8			32, 3	2, 32	
		128, 8, 8	3			128, 8, 8		32, 4, 4		017 0 0	64, 16, 16		
		256, 4, 4	4	217, 8, 8	1	256, 4, 4		64, 2, 2	217, 8, 8		128,	8, 8	
		256		400		256		400			256,	4, 4	
		256		400		256		400	40		0		
		50		50		50		50	5()		
		50		50		50		50)		
		50	50	50 50		50 50		50 50		50	50		
		256		400		256		4096	40		0		
		4096		400		4096		128, 8, 8	40 128,		96		
		128, 8, 8	3	4096		128, 8, 8		64, 16, 16			8, 8		
		64, 16, 1	6			64, 16, 16		32, 32, 32		64, 16	6, 16		
		32, 32, 3	2			32, 32, 32				32, 32	2, 32		
Parameters		3.6 M		7.6 M		3.6 M		1.3 M		9.5	Μ		
Size		15.7 MB		29.1 MB		15.7 MB		6.7 MB		41.4 MB			

3. Generator: Variational Autoencoder - Results

Tot IS: 5.59±0.19

Tot IS: 5.86±0.20 Tot IS: 5.82±0.19 Tot IS: 5.75±0.20 Tot IS: 5.94±0.18

Methods

Methods - a growing list

Future projects

Classification

Generation

- Dropout
- Regularisation
- GANs
- Diffusion models
- Normalising flows
- Feed in reduced scattering parameters

Future projects

Classification

- Dropout
- Regularisation

Generation

- GANs
- Diffusion models
- Normalising flows
- Feed in reduced scattering parameters

Diffuse cluster radio emission

Thank you !

Conclusions:

- The scattering transform is computationally efficient
- Performing on the same level as artificial neural networks, it has nevertheless not succeeded generating realistic sources
- More work is undergoing for classification and generation to be applied on diffuse radio emission

Have a question?

Markus Bredberg markus.bredberg@epfl.ch