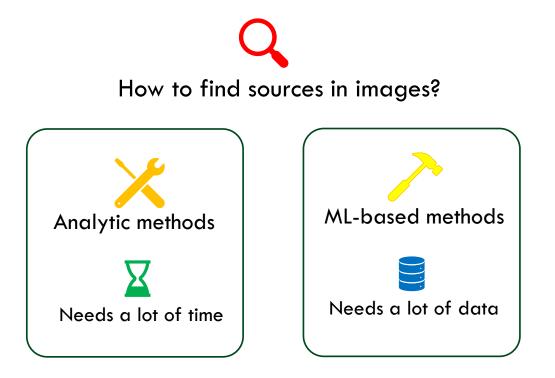
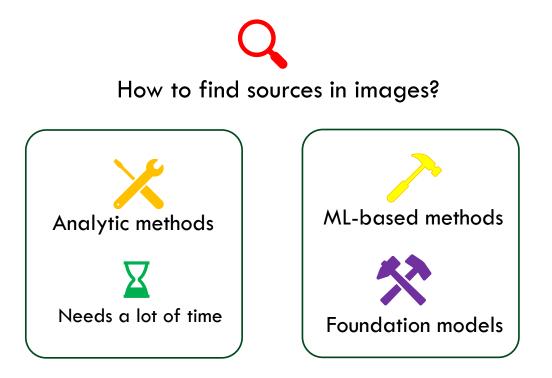


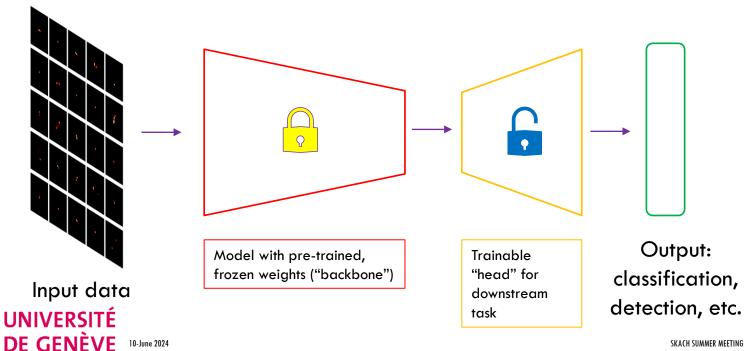
USE OF FOUNDATION MODELS FOR SOURCE FINDING IN RADIO IMAGES

E. Lastufka

M. Audard, O. Bait, M. Dessauges-Zavadsky, M. Drozdova, T. Holotyak, V. Kinakh, D. Piras, O. Taran, D. Schaerer, S. Voloshynovskiy







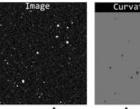
SKACH SUMMER MEETING - E. LASTUFKA

Using foundation models, can we bypass the need for large training datasets?

Background estimation and subtraction Source identification

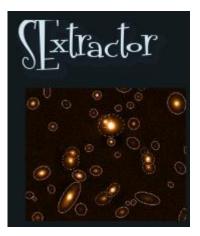
Source characterization

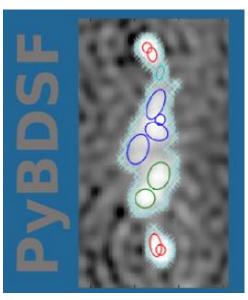
Cataloging

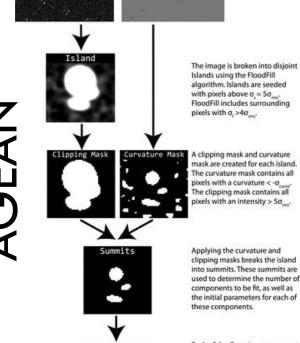


Curvature Map

A curvature map is created from the input image. The curvature noise (σ_{curr}) is calculated. The image noise (σ_{ma}) is set by the user.







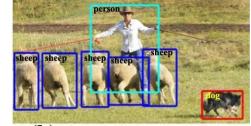
omponent Fits

Each of the Gaussian components are fit jointly with appropriate constraints that ensure the fits will converge to an acceptable solution. Red ellipses show the fitted components.

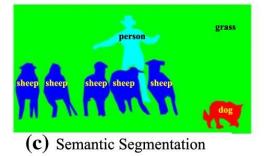
Source identification

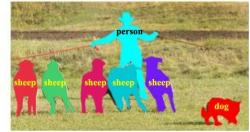
Source characterization

(a) Object Classification



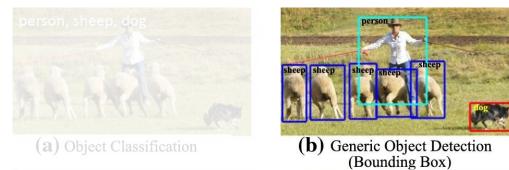
(b) Generic Object Detection (Bounding Box)

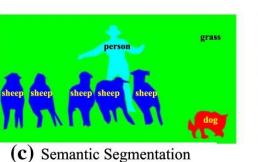




(d) Object Instance Segmetation

Liu et al 2019

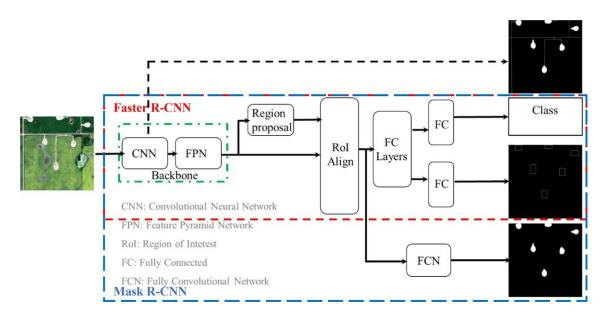




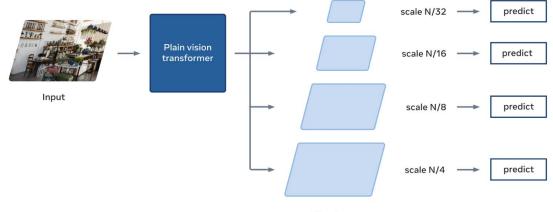
(d) Object Instance Segmetation

<u>Liu et al 2019</u>

FASTER/MASK-RCNN



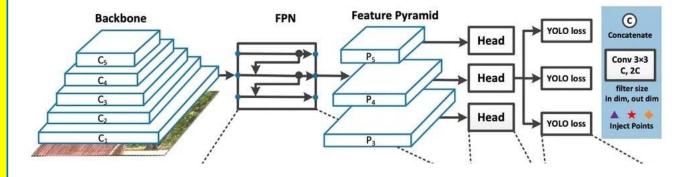
<u>He et al 2022</u>



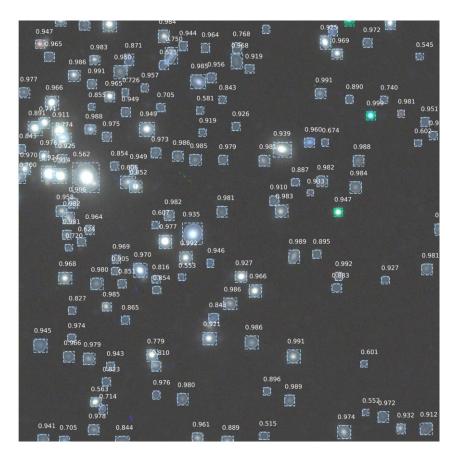
Simple feature pyramid

VIT-DET

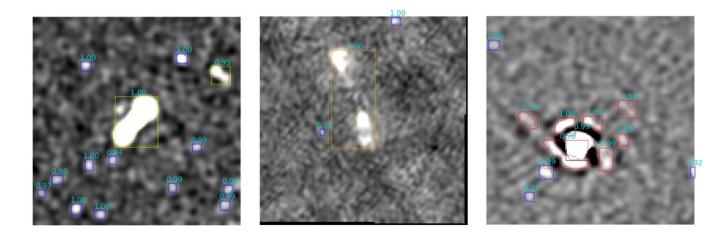
YOLO



- Optical data (simulated DECam images)
- Mask-RCNN for detection and segmentation
- Classification into stars and galaxies



- Small, mixed dataset of radio continuum images (ASKAP, VLA, ATCA)
- Mask-RCNN for detection and segmentation



Comparison of different object detection and segmentation methods from computer vision

Table 2: Detection metrics. YOLOv4 shows the best reliability, but this high value is given by a high IoU threshold. BS stands for batch size

Model BS	DC	Reliability			Completeness			F1-Score			mAP
	Do	Compact	Extended	Total	Compact	Extended	Total	Compact	Extended	Total	Total
Mask R-CNN	32	48.7%	88.8%	52.0%	82.3%	77.0%	79.5%	61.2%	82.5%	62.9%	70.2%
Detectron2	64	59.8%	62.9%	59.1%	83.7%	90.9%	83.9%	69.7%	74.3%	69.4%	83.9%
DETR	2	75.0%	84.6%	76.4%	76.6%	84.9%	76.8%	75.8%	84.8%	76.6%	79.0%
Yolo v4	64	97.4%	95.9%	97.2%	48.3%	85.5%	50.2%	64.5%	90.4%	66.2%	53.8%
Yolo v7	32	87.5%	87.7%	87.4%	60.0%	86.6%	61.0%	69.1%	87.2%	71.7%	61.6%
YOLOS	2	55.9%	78.1%	58.0%	75.0%	84.8%	75.5%	64.1%	81.3%	65.6%	76.3%
EffDet-D1	64	96.1%	0.0%	64.9%	42.2%	0.0%	33.7%	58.6%	0.0%	44.4%	53.5%
EffDet-D2	32	96.7%	0.0%	69.8%	48.5%	0.0%	39.1%	64.6%	0.0%	50.1%	53.8%

Transformer-based methods benefit from pre-training

Table 2: Detection metrics. YOLOv4 shows the best reliability, but this high	
value is given by a high IoU threshold. BS stands for batch size	

Model	BS	Reliability			Completeness			F1-Score			mAP
		Compact	Extended	Total	Compact	Extended	Total	Compact	Extended	Total	Total
Mask R-CNN	32	48.7%	88.8%	52.0%	82.3%	77.0%	79.5%	61.2%	82.5%	62.9%	70.2%
Detectron2	64	59.8%	62.9%	59.1%	83.7%	90.9%	83.9%	69.7%	74.3%	69.4%	83.9%
DETR	2	75.0%	84.6%	76.4%	76.6%	84.9%	76.8%	75.8%	84.8%	76.6%	79.0%
Yolo v4	64	97.4%	95.9%	97.2%	48.3%	85.5%	50.2%	64.5%	90.4%	66.2%	53.8%
Yolo v7	32	87.5%	87.7%	87.4%	60.0%	86.6%	61.0%	69.1%	87.2%	71.7%	61.6%
YOLOS	2	55.9%	78.1%	58.0%	75.0%	84.8%	75.5%	64.1%	81.3%	65.6%	76.3%
EffDet-D1	64	96.1%	0.0%	64.9%	42.2%	0.0%	33.7%	58.6%	0.0%	44.4%	53.5%
EffDet-D2	32	96.7%	0.0%	69.8%	48.5%	0.0%	39.1%	64.6%	0.0%	50.1%	53.8%

BURKE ET AL 2019

- Optical data (simulated <u>DECam</u> img es)
- Classification into stars and gala
 es

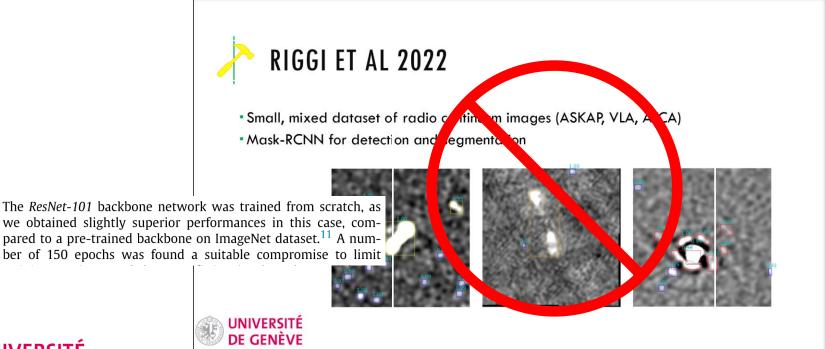
overfitting of the network. We use Mask R-CNN weights provided by Abdulla (2017) trained on the Microsoft Common Objects in Context (MS COCO) data set (Lin et al. 2014) as the starting point for our training procedure. MS COCO is a data set of \sim 328 000

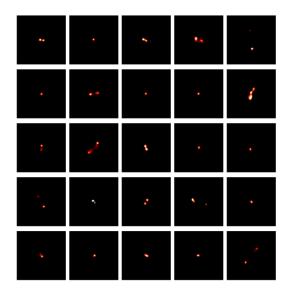
m

0

0.984

0.5520.972

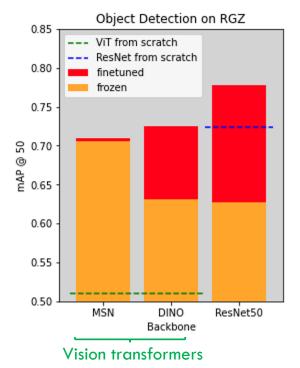




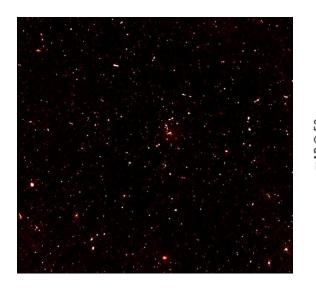
10-June 2024

UNIVERSITÉ

DF GFNĚVF

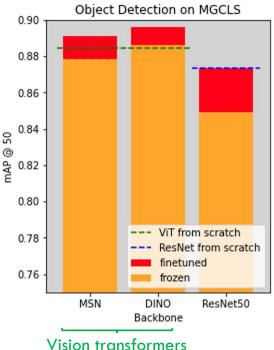


- Transfer learning with frozen Vision Transformer backbones gives better performance than trained-fromscratch Vision Transformers!
- Transfer learning less successful with ResNet50 backbone
- Fine-tuning improves performance



10-June 2024

UNIVERSITÉ DE GENÈVE

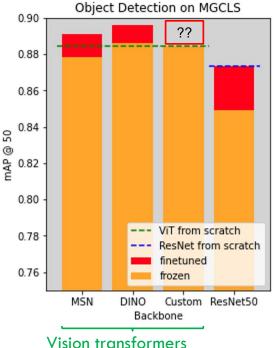


 Fine-tuning required to match or surpass trained-from-scratch performance



10-June 2024

UNIVERSITÉ DE GENÈVE

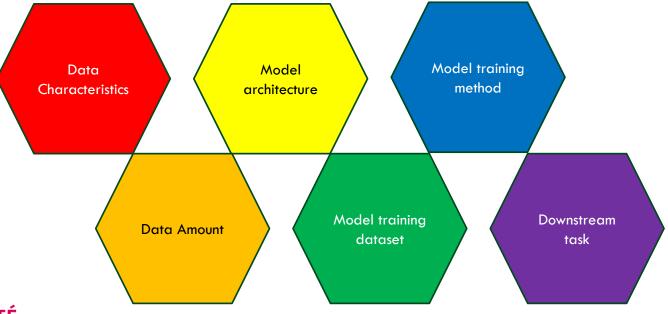


 Will using a foundation model pre-trained with radio astronomy images bring significant performance benefits?

```
SKACH SUMMER MEETING - E. LASTUFKA
```


Hugging Face Q Search m Models	🖶 Datasets 📓 Spaces 🍝 Posts 🧯 Docs Pricing 🕞 Log In Sign Up						
Tasks ① Libraries Datasets Languages Licenses Other	Models 2,070 Filter by name Full-text search 11 Sort: Most downloads						
Q Filter Tasks by name O Reset Tasks	facebook/detr-resnet-50 Bo Object Detection + Updated Apr 10 + ± 558k + ♡ 553						
Multimodal	co object detection + optiated spirito + 2 336k + 4 333						
Image-Text-to-Text S Visual Question Answering	<pre>microsoft/table-transformer-structure-recognition</pre>						
Document Question Answering	B Object Detection + Updated Sep 6, 2023 + ± 558k + ♡ 141						
Computer Vision	TahaDouaji/detr-doc-table-detection						
⇔ Depth Estimation ☑ Image Classification	₿ Object Detection + Updated Apr 12 + \pm 527k + \heartsuit 39						
Diject Detection 🛛 Image Segmentation	<pre>microsoft/table-transformer-structure-recognition-v1.1-all</pre>						
☞ Text-to-Image Image-to-Text	ى Object Detection → Updated Nov 18, 2023 → ± 513k → ♡ 35						
🐵 Image-to-Image 🛸 Image-to-Video							
Unconditional Image Generation	<pre>>> facebook/detr-resnet-101</pre>						
🕫 Video Classification 🐵 Text-to-Video	B Object Detection + Updated Dec 14, 2023 + ± 460k + ♥ 87						
Zero-Shot Image Classification	<pre>microsoft/table-transformer-detection</pre>						
🕄 Mask Generation 🛞 Zero-Shot Object Detection	B Object Detection + Updated Sep 6, 2023 + ± 384k + ♡ 226						
🐵 Text-to-3D 😥 Image-to-3D							
Image Feature Extraction	 B Object Detection + Updated Apr 10 + ± 257k + ♥ 202 						

SKACH SUMMER MEETING - E. LASTUFKA



SKACH SUMMER MEETING - E. LASTUFKA

TRANSFER LEARNING: A PRACTICAL GUIDE FOR ASTROPHYSICS DATA

