

A presentation on

Radio Halo Detection using Generative Models Assisted **Classifiers** with **IVIVA** Data

by <u>Ashutosh K. Mishra¹</u> Under the supervision of: Shreyam Parth Krishna, Emma Tolley & Jean-Paul Kneib

Email: ashutosh.mishra@epfl.ch

Cosmic Webs

Abell 2744 : Pandora's Cluster

3

Red : X-Ray Blue : Lensing

X-ray: NASA/CXC/ITA/INAF/J.Merten et al, Lensing: NASA/STScI; NAOJ/Subaru; ESO/VLT, Optical: NASA/STScI/R.Dupke

LMAP (Lensing)

Lensing: NASA/STScI; NAOJ/Subaru; ESO/VLT

Credit X-ray: NASA/CXC/ITA/INAF/J.Merten et al

Optical

Radio

Constituent Galaxies

Credit Optical: NASA/STScI/R.Dupke

Radio Sources

Credit Radio: Pearce et al., NRAO/AUI/NSF

Motivation for the Work Diffuse Extended Emission Detection

Red : Radio ; **Blue** : X-Ray

01

Rise of Machine Learning in Radio Astronomy

Why MWA?

8

MeerKAT

Larger baselines
No blending of point sources

MWA

• Difficult to deal with due to poor resolution and blending !

Simplified Classification

 origin: (probably) from merger-driven turbulent (re)-acceleration mechanisms

11

Example

Halo

Minihalo

Candidate Halo

Candidate Minihalo

Data Collection

3 (Candidate) Minihalos (cmH)

Pre-Processing

3 σ Clipping: Image [Image< mean(Image) + 3 σ] = 0

02

01

Making relevant sized <mark>cut-outs</mark> from the clipped image

03

04

Log Normalization of cut-outs

Min-Max Normalization for Classifier

Noise Estimation I

01

Non-GLEAM Images : Residual Files Available

Good Noise Estimate!

Residual File and Fitting Example

Noise Estimation I

Non-GLEAM Images : Clipped Image Example

02

Log-Normalized Plots

Noise Estimation II

GLEAM Images : Residual Files NOT Available

MANUAL NOISE ESTIMATION

5 Special Patches

01

σ Estimate with ds9!

Image Augmentation

01

Rotation about centre through multiple of 45 degrees in the range [0,360°] : 8 of them

2 Flips (up-down, left-right)

03

02

Pixel Scaling with a random coefficient chosen from the range [0.9,1.3]; 10 of them

04

Size scaling: Standard cutout for classifier 64 by 64

Halo Image Generation

Conditional Diffusion Model

REAL IMAGE

Generated Samples

Looking 'Realistic'!

REAL

22

Halo Image Generation

Conditional Wasserstein GAN (cWGAN)

Better than our diffusion!

02

cWGAN (on H, cH, mH)

Generated Real Generated Real 50 · 50 · 50 -50 · 0 🕤 50 · 0 🕤 0 6 0 6 0 6 50 -

Works for samples of varied classes!

Test of Image Quality

Diffusion

Classifier

Training & Test Data

Classifiers

Simple CNN (LeCun et. al. 1998) - 0.05M parameters (VGG 16 ~ 100M parameters)

Both loss and accuracy begin to saturate!

ROC, Confusion Matrix

Does a pretty good job with 0.05M parameters!

Fully-Connected Network for Classification

02

Not Bad (Around 90% validation accuracy)!

Indeed improves the base dense network performance!

Different Classifiers and Corresponding results

	Precision	Recall	Specificity	F1-Score
Simple CNN	0.97	0.93	0.97	0.95
Multi-Headed Attention CNN	1.0	0.93	1.0	0.96
Fully Connected	0.89	0.94	0.89	0.92
GAN Aided Classifier	0.96	0.95	0.95	0.95

Work in Progress! (Still to apply on MeerKAT)

Comparisons for classifiers with classical and wGAN augmentation (separately) (also with Diffusion)

Comparison between different classifier models with k-fold Cross-validation

Stable Diffusion for Halo Image Generation

Radio Halo Detection directly from u-v plane with the use of shapelets

THANK YOU!

Question?

Ashutosh Kumar Mishra Email: ashutosh.mishra@epfl.ch

Backup Slides

Generated	Real	Generated	Real

Five Training Runs

Epochs

Data Collection I

S.N.	Galaxy Cluster	Classification	Source of Data Collection	Classification Paper	
1	Abell 0141	Н	https://dmc.datacentral.org.au/ dataset/mwa-askap-atca-and- chandra-images-of-abell-141- and-abell-3404	https://arxiv.org/abs/ 2103.08282	
2	Abell 3404	Н	"	https://arxiv.org/abs/ 2103.08282	
3	Abell S1121	Н	GLEAM Survey (<u>https://</u> skyview.gsfc.nasa.gov/current/ cgi/query.pl)	https://arxiv.org/abs/ 1707.03517	
4	Abell S1063	Н	GLEAM Survey	https://arxiv.org/abs/ 1707.03517	
5	MACS J2243.4-0935	Н	GLEAM Survey	https://arxiv.org/abs/ 1707.03517	
6	Abell 2163	Н	GLEAM Survey	https://arxiv.org/pdf/ 1701.06742	
7	Abell 2254	Н	GLEAM Survey	https://arxiv.org/pdf/ 1701.06742	
8	Abell 2744	Н	GLEAM Survey	https://arxiv.org/pdf/ 1701.06742	
9	plck G287.0+32.9	Н	GLEAM Survey	https://arxiv.org/pdf/ 1701.06742	
10	rxc j1314.4-2515	Н	GLEAM Survey	https://arxiv.org/pdf/ 1701.06742	

40

Data Collection II

11	Abell 2680	сН	https://dmc.datacentral.org.au/ dataset/data-for-an-mwa-2- survey-of-diffuse-radio- emission-in-galaxy-clusters	https://arxiv.org/abs/ 1707.03517	
12	Abell 2693	сН	"	"	
13	Abell 2811	cH (or mH)	"	"	
14	Abell 3186	сН	"	"	
15	Abell 3399	сН	"	"	
16	PSZ1 G287.95-32.98	сН	"	"	
17	Abell 2496	сН	GLEAM Survey	"	
18	Abell 2721	сН	GLEAM Survey	"	
19	Abell S0084	сН	GLEAM Survey	"	
20	GMBCG J357.91841-08.979 78	сН	GLEAM Survey	"	
21	Abell 0122	cmH	https://dmc.datacentral.org.au/ dataset/data-for-an-mwa-2- survey-of-diffuse-radio- emission-in-galaxy-clusters	"	
22	MCXC J0145.2-6033	cmH	"	"	
23	rxc j01377.2-0912	mH	"	"	

41

