SKACH

Square Kilometer Array Swiss project (SKACH) 2024 spring meeting MID band 6 instrument EBB Status and progress

Hes·so

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland Winterthur, ZHAW 11.6.2024

SCHOOL OF ENGINEERING AND MANAGEMENT

Mid-band 6: presentation outline

- Brief reminder of overall project
- Requirements evolution
- Planning of activities
- Status of EBB work packages
 - Project management and documentation (WP2404)
 - System design and requirements (WP2410)
 - Front-end (WP2400)
 - Digitizer (WP2300)
- EBB system setups
- Next actions
- Activities in other projects

University of Applied Sciences and Arts Western Switzerland

EBB is ambient/connectorised, EM will be cryo (20K) and wave-guide based

Block diagram: Mid-band 6 receiver EBB

- WP2404: Documentation: SRR in dedicated slide
 - **Project Management Plan (PMP) update** $\overline{}$
 - Design & Development Plan (DDP) update
 - Specifications list updated after SRR
 - Template for the "Stories" for the "agile" Sprints
 - EMC control plan for EM
 - Master test plan (MTP) to be update for subsystems unit and full tests × of FBB
- **WP2405**: purchasing is a critical activity in the current times of shortage of electronic components, establishing a Long Lead Item list
- WP2406: Cameo and git
 - \triangleleft setting up
 - Maintenance
 - next milestone: Preliminary Design Review, june 2024

Requirements evolution

Requirements

- Astronomical science needs have been taken into account for EM (e.g. 40/50GHz)
- Astronomy not really relevant for band 6 (15-25GHz), except as water vapour radiometer (IRAM collaboration in HE Radioblocks)
- No requirement was written by SKAO for HES-SO
- HEIG-VD gets inspiration for requirements from those written for band 5
 - Tailored for EBB

Action plan

- Design EBB to state of the art and using cutting edge technologies
- EBB results will confirm requirements or define them more precisely
- After PDR, final requirements for the EM in frame of future development projects

Roadmap to 50GHz MB6?

- 40GHz should be possible for digitizer (ADC specified, 5-6 bits)
- 50GHz may be possible
 - requires measurement of state of the art ADC on state of the art PCB
- Will require a complex "dual-path" front-end
 - no LNA and waveguides can cover 15-50GHz which is Ultrawideband (UWB)
 - e.g. 2 bands: 15-28GHz, 28-50GHz (WB)
 - either separate positions on indexer (bands 6+7), 2 horns
 - OR 2 bands combined into same output (band 6+)
- band 6+ 015-50GHz feed horn
 - must have sufficient performance (constant aperture ratio)
 - tough project in itself (not SKACH)
- some aspects covered in radioblocks project

- WP2410:
 - System requirements review SRR
 - Noise model and analysis
 - Electronics (Horn output to ADC)
 - Rough model (excel file) for ambient temp EBB
 - (-) Fine model with frequency caracteristics of subsystems
 - Antenna noise
 - 🕘 Sky and earth noise
 - Need geometrical model of full dish + imperfections
 - Collaboration needed
 - Science requirements
 - For EBB
 - 🔼 For EM

- WP2420: microwave front end components
 - \square COTS Horn with Built-in OMT in delivery (1x)
 - Microwave cables listed
- WP2430: LNA1 v2 in delivery and validated at ambient
 - Gain 27-28dB, Noise figure 1.8dB, X-microwave format, encased
 - Miniature polarisation ("power supply") circuit validated
- WP2440: A calibration white noise source
 - ☑ is ordered (calibrated, custom-made)
 - Coupling mechanism via relay switching: relays ordered
- WP2450: For the EBB, mechanical design of the front end (fitting of the various connectorized elements on a chassis) once we have all the elements

- ✓ 10-50GHz QRFH
 Feed antenna
 (Acura Microwave)
- 2-40GHz splitter (Mini-Circuits or HEIG-VD design)
- 🚴 coaxial relays: ordered

 \square

10-40GHz high ENR noise source (Noisewave) **received**

- Circulators: Custom 15-25GHz received (Acura)
- Coaxial cables, adapters in order etc (Mini-Circuits et al.)

12

- WP2310: Second LNA needs a lot of gain (60dB)
 - \square Diramics MMIC selected (2x2)
 - Circuit architecture defined, although searching some means of
 - decreasing the cost
 - X-MW based build
- WP2320: fixed band-pass anti-alias filter for selecting the 2.5GHz subbands (1 in 4)
 - HEIG-VD design for adjustable filters for sub-bands ("almost" single design for 4 bands, same principle of operation as for variable filter WP2360 but screw-adjusted
 - Mechanical drawings completed, in discussion with manufacturer
 - To be manufactured
 - 4:1 sub-band switches
 - 2x solid-state X-MW mounted
 - 2x radiall coaxial relays ordered

SKACH

Digitizer 2/3 analog design (WP2310+20)

8x BPAF-F filter (WP2320)

2x 4:1 relay (WP2310)

X-Microwave prototyping

Switching of BP filters

large variable gain

Diramics amplifiers

HE IG

WP2330 ADC:

SKACH

- Approach changed
 - Instead of 1x dual ADC board developed for mfr, use 2x single ADC boards designed by ADC mfr
 - Decouples one project from the other (de-risking)
- HEIG-VD gets 2x single-ADC board from mfr, **1 received end march 24**

WP2340: optical Links:

- tech pre-study: some resources identified
 DDP*
- Block diagram re-defined DDP
- 🕙 Electronic design ongoing: schematic 🗹 PCB 🤼

WP2350 FPGA packetizer:

- FPGA eval board (Stratix 10 SX) operational
- HDL code validated data from ADC out to 100GB ethernet at up to 11.5GSamples/s

15

- (margin, 92gb/s out)
- ☑ Design of control system through the fiber
- WP 2370 SYC system controller:
 - ☑ architectural decision □ NOT USING processor core on FPGA
 - PC GUI will control FPGA
 - WP2390 testing:
 - 🔼 Test architecture design

Haute Ecole Spécialisée de Suisse occidentale University of Applied Sciences and Arts Western Switzerland

 \square

Digitizer conv+digital part (WP2330,40,50)

Packetizer

(WP2350)

control I/F in FPGA coard

ENGINEERING

MANAGEMENT

AND

MonoCAN ADC board (WP2330): Integrating 2x single ADC eval board in system, distributing 1 CLK [] 2 channels, phase compensation, uC FW adaptation

Electrical-optical-electrical boards (WP2340): enabling HS data transfer and control of digitizer and front end **through optical fibre**

 Image: Second second

Hesso Haute Ecole Spécialisée de Suisse occidentale University of Applied Sciences and Arts Western Switzerland

Digitizer digital + test part (W2340,50,70,90)

Haute Ecole Spécialisée de Suisse occidentale University of Applied Sciences and Arts Western Switzerland

· + + + + + + ,

SKAC

OF

AND

ENGINEERING

ADC-FPGA integration test @REDS (WP2350)

SCHOOL

ENGINEERING

MANAGEMENT

OF

AND

HE IG

WP2360 EBB variable filter pre-study 1/2

- Single cavity PoC as preparatory work for future full filter (Proof of Concept)
- PoC scaled down 8:1 in frequency
 - 1.9-3.1GHz
 - Single cell resonator
 - Single coaxial interface (SMA)
 - Actuators for frequency and coupling factor are commercial micrometric screws
 - Will enable studying effect of temperature variations etc.
 - Will be used in radioblocks
 - to continue development of a multi-cavity filter
 - Study upper modes in an easier way (same filter size used 3-4x higher in frequency)

SCHOOL OF

AND

ENGINEERING

SKACH EBB Filter prestudy 2/2 (WP2360)

Mid-band 6: Next actions in SKACH

SCHOOL OF

AND

ENGINEERING

- Finalize development of EBB
- PDR june 2024
 - Designs of all subsystems
 - Documentation notably:
 - Design, Test, Risk, Quality ("SKAO-compatible")
- Milestone 2024-06:
 - Is HW ready for Swiss SKA days demo?
- Goal: EBB operational 2024-09
- Next EBB milestone: PDR 2024-04
- End of project: 2024 anyway!!!

RadioBlocks (Horizon Europe)

- Scientific collaboration
 - **30+** partners (MPIfR, IRAM, EVN, JIVE, ASTRON, EPFL...)
 - Project meeting in Madrid June 4-6
 - "Blocks" for radio-astronomy
 - Technological goals
 - (industry collaboration)
 - Opensource the results (as much as possible)
 - WP2 (front-end): HES-SO: Bandstop/notch filters
 - For radio-frequency interference (RFI) rejection/attenuation
 - Important when infrastructure in inhabited areas (phones, car radar...)
 - Satellite interference
 - Specs and interest confirmed (IRAM, radiometer)
 - NEW Collaboration with Yebes Observatory (SP) on RFI filters
 - Tune high-temp superconductor (YbaCuO) filter (70K)
 - Cavity filter operating in cryo (20K)
 - Evaluate feasibility of superconductive (8K) RFI filters (bandpass, bandblock)
 - WP3 (innovative digitizers): HES-SO: passband digitizer
 - 5 to 7-cavity mechanically tuned bandpass filter
 - Digitizer
 - NĔW
 - Integrate digitizer in instrument for MPIfR (Bonn) (optical front-end control)
 - 100GbE on FPGA and data sync (INAF, Cagliari)
 - EBB Digitizer as (lab) measurement instrument for Chalmers (SE)
- Trying to leverage this for future SKAO MidBand 6 Engineering Model!

Single/multiple notch filter for ambient temperature (WVR)

- First «proof of principle» simulations : 18-22GHz range for notch frequency, WR51 waveguide with SMA transitions
- Coupling using coaxial and pigtail
- Single cell, scalable for multiple
- Retrofittable on existing WG
- Goal : setting for frequency through micro-stepper motor with ~1um resolution
- Coupling factor

First simulations 20-25GHz

Frequency responses : 20um "plunger" difference allow 100MHz bandblock

- Phase Array Feeds 2024, @ BYU, Provo, UT, USA (near Salt Lake City)
- Interesting presentations about ongoing projects
- (http://csas.ee.byu.edu/PAF2024/)
 - L/S band PAFs
 - L-band ALPACA for Greenbank RT (BYU, Cornell)
 - L/S band 100-channel PAF for Effelsberg (MPIfR)
 - Back-ends
 - CASPER instrumentation
 - Dielectric antenna beamformers??
 - Visit of ALPACA lab at BYU
 - No coffee, no tea...
 - Presented our work on filters and digitizers
 - Showed the interest for of direct conversion for higher bands
 - Direct conversion receiver more scalable than heterodyne receivers
 - Digital optical transmission instead of RfoF enables different architectures
 - Issues with antenna arrays
 - Compact beamformers leave little space $d_{opt} = \lambda/2$
 - Sparse arrays are less efficient and present high fringes
 - Multiband is even more challenging
 - However ALMA has PAFs with much higher spacing
 - To be researched
 - Future applications

Mid-band 6: industrial colaboration

SCHOOL OF ENGINEERING

MANAGEMENT

AND

- Innosuisse project:
 - Tried with 3 companies, not interested
 - No "bandwidth" available
 - Too long term
 - Too risky
 - Despite (potential) high return
 - Still trying to find swiss partners
 - Refactor for quantum?
- **NEW** Collaboration with ADC manufacturer
 - Interested in a demonstrator with optical interface
 - showcasing radio-astronomy applications
 - Other science applications
 - Write common paper

.

