

Scaling Sustainable Computing

New Methods for Enhancing Efficiency in the SKA Regional Data Centers

Dr. Denisa Constantinescu, Darong Huang, Prof. David Atienza

Embedded Systems Laboratory (ESL) EPFL, Switzerland

denisa.constantinescu@epfl.ch

Computing is Ever More Indispensable

...and Growing!

Key in supply-chain of products, services and science

but not sustainability-driven

cannot scale without improving efficiency

Shift towards sustainable computing

14th of March '24 EU Data Centres Reporting Scheme

- → KPIs to rate sustainability
- Total energy, water, heat in DCs
- Wasted, reused, renewable sources
- EU's target Fit for 55
 - → reduce net GHG emissions by at least 55% by 2030

GREEN500 LIST - JUNE 2024

 R_{max} and R_{peak} values are in PFlop/s. For more details about other fields, check the TOP500 description.

 R_{peak} values are calculated using the advertised clock rate of the CPU. For the efficiency of the systems you should take into account the Turbo CPU clock rate where it applies.

Green500 Data

Rar	TOP500 nk Rank	System	Cores	Rmax (PFlop/s)	Power (kW)	Energy Efficiency (GFlops/watts)
1	189	JEDI - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, ParTec/EVIDEN EuroHPC/FZJ Germany	19,584	4.50	67	72.733
2	128	Isambard-Al phase 1 - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE University of Bristol United Kingdom	34,272	7.42	117	68.835
3	55	Helios GPU - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE	89,760	19.14	317	66.948

Challenges in our Path towards Sustainable Cloud/DCs

Collocated black-box VMs can suffer from severe performance degradation! (Or over-provisioning needed to "guarantee" performance)

CloudProphet: Black-Box VM Performance Management

Main steps:

- Monitoring data (black box)
- 2. Application identification
- 3. Performance prediction

CloudProphet-Dataset repo

Accurate Performance Prediction of CloudProphet

Trade-off between sampling time and prediction accuracy

- Less than 7% prediction error after 20 days, better with more samples
- 5% performance prediction error after 2 months of operation

Challenges in our Path to a Sustainable Cloud

Large Resource Wasted in Cloud Designs!

Worse case resource provisioning paradigm: variable demand

- Hint: Appropriate frequency scaling approach (DVFS) can significantly reduced wasted energy in data centers
- Scaling governors are critical!

Improved Energy/Temp.-Efficient Server Management

Compared with intel-governor, GreenDVFS achieves:

- No performance loss
- Up to 19% less energy consumed
- Up to 35% lower temperature in operation

GreenDVFS (Camera-ready)

[Huang et al., CCGrid'24]

Challenges in our Path to a Sustainable Cloud

SRCNet: Sustainable Energy Sources in DCs Location

Geo-distributed data centers (DCs)

- Multiple DCs in different locations connected through network
- How to allocate VMs to different DCs?

Ideal placement for green DCs

 How to manage renewable energy sources?

*

*

•

ŷ

ECOGreen: Proposed Strategy

Hour-ahead power market (bidding)

ECOGreen: results for Green and Sustainable DC

Different power supply sources (1-week time horizon)

- In comparison to the-state-of-the-arts, ECOGreen
 - 71% reduction of financial costs
 - 48% increase of use in renewable energy (more sustainable!)

Smmary: Sustainability-Aware Renewable Energy Management

DCs/VM manag. (CloudProphet + GreenDVFS)

- Global phase: clustering VMs into DCs
- Local phase: VMs allocation for minimum performance degradation

ECOGreen: Low-complexity green energy controller

- Management of renewable energy
- Add batteries in DCs: charge / discharge decisions

ECOGreen Energy Controller [Pahlevan et al., TSUSC 2020]

Challenges in our Path to a Sustainable Cloud

Scaling Sustainable Computing in Networked DCs: SRCNet

IT/Cloud has enabled our progress for 50+ years ...but current cloud systems are not sustainable

How can we measure/estimate?

- Perf. upcoming workloads → CloudProphet
- Energy in DCs → work in progress
- Water & heat waste → work in progress
- GHG emissions → work in progress

How can we improve sustainability? Server level

- Power management → GreenDVS
- Specialized computing architectures → SEAMS

(multi)Datacenter level → EcoGreen

- Energy mix → very limited use of renewable
- Climate change impact → work in progress

Follow-up Proposal

Explore Sustainable Computing Techniques for SRCNet at

EcoCloud Sustainability Center ecocloud.epfl.ch

- ~150 m² of space for experiments on sustainable computing
- 50KW per rack/2.5m rack
- Monitoring: energy, temp., vibrat., humidity
- Cooling: air or water cooling (single-/2-phase)

Supports large multi-country academic-industry research projects on cloud

- UrbanTwin: An urban digital twin for climate action for Lausanne
- Heating Bits: DCs integrating heating and cooling supply of local districts
- SEAMS: Sustainable and energy-aware methods for SKA → seams-project.com

Scaling Sustainable Computing

New Methods for Enhancing Efficiency in the SKA Regional Data Centers

Dr. Denisa Constantinescu

Embedded Systems Laboratory (ESL) EPFL, Switzerland

denisa.constantinescu@epfl.ch

Acknowledgements (alph. order): Prof. David Atienza, Prof. Ayse K. Coskun, Dr. Luis Costero, Mr. Darong Huang, Dr. Ali Pahlevan, Mr. Amirhossein Shahbazinia, Prof. Marina Zapater

Swiss National
Science Foundation:
SEAMS

ETH Board: UrbanTwin JI Action

European Commission

European Research Council

Backup slides

Summary Tools

- IT/Cloud has enabled our progress for 50+ years
 - Multi-core servers and data centers are becoming more powerful
 - Big Data + Exascale era could be conceived...

GreenDVFS

- But current cloud systems are not sustainable; changes needed
 - Very different and dynamic workloads than classical HPC
 - Severe performance interference among VMs collocated together
 - Very limited use of renewable energy supplies

ECOGreen

- ML-based management of DCs to <u>start conceiving</u> a <u>sustainable cloud</u>
 - 1. CloudProphet: Accurate and adaptive to new workloads (<7% accuracy error)
 - 2. GreenDVFS: Higher energy efficiency per server (20% less energy, 35% less temp.)
 - 3. ECOGreen: Multi-DC management + renewables (48% increase of renewables)

EcoCloud-EPFL Sustainability Experimental facility CCT

~150 m² of space for experiments on sustainable computing

Recycled racks/donations

Experimental support

- 50KW per rack/2.5m rack
- Monitoring: energy, temp., vibrat., humidity
- Cooling: air or water cooling (single-/2-phase)

Racks with air/water passive cooling

At EcoCloud-EPFL, we look for new interesting projects!

forward to share this facility

custom experiments

Application Identification

Key Outcome - Best Workload-Frequency Scaling Optimizer for Energy: Take it easy when going uphill!

- L(f, wkl): Optimize performance, power, temperature
 - intel-governor: focus on CPU utilization

■ GreenDVFS: $L(f, wkl) = \alpha \cdot Perf(f, wkl) - \beta \cdot Power(f, wkl) - \gamma \cdot Temp(f, wkl)$

 $\alpha = 0.5, \beta = 0.3, \gamma = 0.2$

But Linux/Proprietary Scaling Governors Are Not Optimal

performance: highest frequency

- (default) <u>schedutil</u> or <u>intel-governor</u>:
 - Frequency scaling with CPU utilization

Take home messages:

powersave is the most energy-intensive!

Linux/propr. scaling governors are sub-optimal!

