Deep U-band MeerKAT observations of the COSMOS field

SKACH team

PI: Mirka Dessauges-Zavadsky (UniGE)

Cols: Omkar Bait, Daniel Schaerer (UniGE), Mark Sargent (ISSI)

Three fundamental pillars governing galaxy evolution

(1) Star formation rate density evolution

High-redshift galaxies experience a peak in their SFR density at z~2, which steeply declined since.

Gruppioni/w DZ+20

Three fundamental pillars governing galaxy evolution

1 Star formation rate density evolution

High-redshift galaxies experience a peak in their SFR density at z~2, which steeply declined since.

Madau & Dickinson 14

Gruppioni/w DZ+20

The integral of the SFR density over cosmic time gives the stellar mass density.

About half of all stellar mass was formed by z~1.

Three fundamental pillars governing galaxy evolution

(1) Star formation rate density evolution

High-redshift galaxies experience a peak in their SFR density at z~2, which steeply declined since.

Madau & Dickinson 14

Gruppioni/w DZ+20

The integral of the SFR density over cosmic time gives the stellar mass density.

About half of all stellar mass was formed by $z\sim1$.

Three fundamental pillars governing galaxy evolution

1 Star formation rate density evolution High-redshift galaxies experience a peak in their SFR density at z~2, which steeply declined since.

Gruppioni/w DZ+20

(2) Molecular H_2 mass density evolution

There is now a growing observational evidence that the H2 mass density follows the SFR density evolution as expected.

Decarli+19,20; Aravena/w DZ+24

Three fundamental pillars governing galaxy evolution

1 Star formation rate density evolution High-redshift galaxies experience a peak in their SFR density at z~2, which steeply declined since.

(2) Molecular H₂ mass density evolution There is now a growing observational evidence that the H2 mass density follows the SFR density evolution as expected.

Decarli+19,20; Aravena/w DZ+24

Context between 2020-2024

Sampling the HI neutral gas content across cosmic time

• Until 2020 only estimates of HI column densities measured in absorption (through the damped Lyman-alpha line) along lines-of-sight of luminous quasars and gamma-ray bursts are available at z>0.4.

From the extrapolation of the measured HI column densities to **the cosmic HI** mass density, Walter+20 and Heintz+21,22 found:

The HI density dominates over the H₂ density from z~6 to z~2, and the HI and H₂ densities reach comparable values near cosmic noon (z~1–2).

Heintz+21

Context between 2020-2024

Sampling the HI neutral gas content across cosmic time

- Until 2020 only estimates of HI column densities measured in absorption (through the damped Lyman-alpha line) along lines-of-sight of luminous quasars and gamma-ray bursts are available at z>0.4.
- HI mass measurements of individual galaxies <u>via the 21cm emission line</u> are still very challenging at z>0 with current radio facilities because of the line faintness.
 - —long-term detection record at z=0.376 (Fernandez+16)
 - —debatable detection in a strongly lensed galaxy at z=1.291 (Chakraborty&Roy23)

Context between 2020-2024

Sampling the HI neutral gas content across cosmic time

- Until 2020 only estimates of HI column densities measured in absorption (through the damped Lyman-alpha line) along lines-of-sight of luminous quasars and gamma-ray bursts are available at z>0.4.
- HI mass measurements of individual galaxies <u>via the 21cm emission line</u> are still very challenging at z>0 with current radio facilities because of the line faintness.
- Recently, independent teams developed stacking techniques of the HI 21cm signal of thousands of galaxies to measure the HI mass based on 2 main surveys.

MIGHTEE-HI survey with MeerKAT

Field : COSMOS # galaxies : 9'023

Redshift range : 0.23 < z < 0.49 / < z > = 0.37

Integration time: 16 h

Frequency range (L-band): 950-1050 MHz

References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range : 0.74 < z < 1.45 / < z > = 1.01

Integration time: 510 h

Frequency range : 550-850 MHz References : Chowdhury+20,22b

HI stacking: Chowdhury+20,21,22abcd

Latest results on HI mass at z>0

MIGHTEE-HI survey with MeerKAT

Field : COSMOS # galaxies : 9'023

Redshift range: 0.23 < z < 0.49 / < z > = 0.37

Integration time: 16 h

Frequency range (L-band) : $950-1050\ MHz$

References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range: 0.74 < z < 1.45 / < z > = 1.01

Integration time: 510 h

Frequency range : 550-850 MHz References : Chowdhury+20,22b

HI stacking: Chowdhury+20,21,22abcd

The 2 surveys show:

- —an HI mass increase as a function of the stellar mass for galaxies at a given z
- —an overall HI mass increase as a function of z

Latest results on HI mass at z>0

—a cosmic HI density agreement with the HI density derived from HI absorption and with the H_2 density at $z{\sim}1$

Latest results on HI mass at z>0

In tension with the cosmological halo mass model...

• Predicting the evolution of the HI fraction (f_{HI}) with halo mass over z=0-4 that is a factor of ~3-10 smaller than f_{HI} at <z>=1.01 measured from HI stacking.

Cosmological data-driven halo mass model (Padmanabhan + 17; Padmanabhan & Loeb 20)

built on the compilation of 21cm HI measurements at z~0, line intensity mapping, and DLAs ① the stellar-halo mass relation from Behroozi+19.

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range: 0.74 < z < 1.45 / < z > = 1.01

Integration time: 510 h

Frequency range: 550-850 MHz References: Chowdhury+20,22b

HI stacking: Chowdhury+20,21,22abcd

MIGHTEE-HI survey with MeerKAT

Field : COSMOS # galaxies : 9'023

Redshift range : 0.23 < z < 0.49 / < z > = 0.37

Integration time: 16 h

Frequency range (L-band) : 950-1050 MHz
References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS) : 74

Redshift range : 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI : M. Dessauges-Zavadsky

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range : 0.74 < z < 1.45 / < z > = 1.01

Integration time: 510 h

Frequency range: 550-850 MHz References: Chowdhury+20,22b

HI stacking: Chowdhury+20,21,22abcd

MIGHTEE-HI survey with MeerKAT

Field : COSMOS # galaxies : 9'023

Redshift range : 0.23 < z < 0.49 / < z > = 0.37

Integration time: 16 h

Frequency range (L-band) : 950-1050 MHz
References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A3COSMOS): 74

Redshift range : 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI : M. Dessauges-Zavadsky

Why the COSMOS field:

- —Most extensive multi-wavelength coverage providing robust stellar mass and star formation measurements.
- —Largest compilation of 20K galaxies with spectroscopic redshifts.

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range : 0.74 < z < 1.45 / < z > = 1.01

Integration time: 510 h

Frequency range: 550-850 MHz References: Chowdhury+20,22b

HI stacking: Chowdhury+20,21,22abcd

MIGHTEE-HI survey with MeerKAT

Field : COSMOS # galaxies : 9'023

Redshift range : 0.23 < z < 0.49 / < z > = 0.37

Integration time: 16 h

Frequency range (L-band) : 950-1050 MHz References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS): 74

Redshift range : 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI : M. Dessauges-Zavadsky

Expected sensitivities:

- —HI line sensitivity of 36 uJy/beam (100 km/s channel)
- —Thermal RMS noise of 1.2 uJy/beam in the continuum (confusion noise of 3.1 uJy/beam)

2–3x deeper than MIGHTEE-HI and CATz1.

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range : **0.74<z<1.45**

Integration time: 510 h

Frequency range: 550-850 M

References: Chowdhury+2(

HI stacking: Chowdhury+2

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2′514

ALMA detections (A³COSMOS) : 74

Redshift range: 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

MIGHTEE-HI survey with M

Field : COSMOS # galaxies : 9'023

Redshift range: 0.23<z<0.49

Integration time: 16 h

Frequency range (L-band): 950-1050 MHz

References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

I. Should be able to detect the model-predicted f_{HI} by stacking 2'514 galaxies.

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range: 0.74<z<1.45

Integration time: 510 h

Frequency range: 550-850 M

References : Chowdhury+20

HI stacking: Chowdhury+2

MIGHTEE-HI survey with M

Field : COSMOS # galaxies : 9'023

Redshift range: 0.23<z<0.49

Integration time: 16 h

Frequency range (L-band): 950-1050 MHz

References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS) : 74

Redshift range : **0.8<z<1.5** / <z>=1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

- I. Should be able to detect the model-predicted f_{HI} by stacking 2'514 galaxies.
- II. Should be able to detect HI
 from the stack of 74 ALMAdetected galaxies and get the
 first complete HI + H2 census
 for the same galaxy sample
 in case the CATz1 GMRT HI
 detection at z=1 is correct.

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range: 0.74<z<1.45

Integration time: 510 h

Frequency range: 550-850 M

References : Chowdhury+2(

HI stacking: Chowdhury+2

MIGHTEE-HI survey with M

Field : COSMOS # galaxies : 9'023

Redshift range: 0.23<z<0.49

Integration time: 16 h

Frequency range (L-band): 950-1050 MHz

References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A3COSMOS): 74

Redshift range : 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

III. Should be able to detect

HI at <z>=0.6 by stacking

6'000 galaxies yielding the first

observational constraint of

the HI mass evolution

from low z (MIGHTEE-HI) to

cosmic noon (Uband COSMOS-HI)

in the same field.

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range: 0.74<z<1.45

Integration time: 510 h

Frequency range : 550-850 M

References : Chowdhury+2(

HI stacking: Chowdhury+2

MIGHTEE-HI survey with M

Field : COSMOS # galaxies : 9'023

Redshift range: 0.23<z<0.49

Integration time: 16 h

Frequency range (L-band): 950-1050 MHz

References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS): 74

Redshift range : 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

IV. Possible HI detections of individual most gas-rich galaxies at 0.4<z<1.5.

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement at z~1!

with another telescope/in another field

CATz1 survey with GMRT

Field: DEEP2

galaxies : 11'419

Redshift range: 0.74<z<1.45

Integration time: 510 h

Frequency range: 550-850 M

References: Chowdhury+2(

HI stacking: Chowdhury+2

MIGHTEE-HI survey with M

Field : COSMOS # galaxies : 9'023

Redshift range: 0.23<z<0.49

Integration time: 16 h

Frequency range (L-band): 950-1050 MHz

References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS): 74

Redshift range: 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

IV. Possible HI detections in individual most gas-rich galaxies at 0.4<z<1.5.

V. Expected radio continuum detections for ~10K individual galaxies allowing to trace the 800 MHz continuum luminosity function evolution.

Current status of the observations

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS): 74

Redshift range: **0.8<z<1.5** / <z>=1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

- Proposal submitted for the MeerKAT Open Call in May 2023.
- Proposal *accepted* in August 2023.
- Observations started in June 2024.
- Observations *ended* in November 2024.

Expected sensitivities:

- —HI line sensitivity of 36 uJy/beam (100 km/s channel)
- —Thermal RMS noise of 1.2 uJy/beam in the continuum (confusion noise of 3.1 uJy/beam)
- 2–3x deeper than **MIGHTEE-HI** and **CATz1**.

Current status of the observations

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS): 74

Redshift range : **0.8<z<1.5** / <z>=1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

Expected sensitivities:

- —HI line sensitivity of 36 uJy/beam (100 km/s channel)
- —Thermal RMS noise of 1.2 uJy/beam in the continuum (confusion noise of 3.1 uJy/beam)
- 2–3x deeper than **MIGHTEE-HI** and **CATz1**.

- Proposal submitted for the MeerKAT Open Call in May 2023.
- Proposal *accepted* in August 2023.
- Observations **started** in June 2024.
- Observations ended in November 2024.

110 hours of observing time sub-divided in 21 Observing Blocks (OBs) [32K channels]:

1 OB: 10 TB with full polarisation [tar.gz file] 3.5 TB with 2-components polarisation

OB format: CASA Measurement Set of **5 TB**

21 OBs (105 TB untar/zip) to be downloaded from SARAO via wget (no other solution)!!!! In progress since December 2024...

Next steps...

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS): 74

Redshift range : 0.8 < z < 1.5 / < z > = 1

galaxies : 6'000

Redshift range : 0.4 < z < 0.8 / < z > = 0.6

Integration time: 110 h (89 h on-source)

Frequency range (U-band): 544-1088 MHz

PI: M. Dessauges-Zavadsky

- 1. Finalise the data download : 60% of data imported so far at UniGE
- 2. Calibrate the uncalibrated visibilities (amplitude, phase, flux) for the HI line:
 - —What storage needed for 105 TB?
 Will the data expand by a factor of ~3?
 - —What compute resources needed for 5 TB MS files ?
 - —Doable with CASA?
 - —Need of another software with a specific MeerKAT data reduction pipeline?
 - —RFI subtraction needed?
 - —Other difficulties to face?
- 3. HI spectral line imaging (data cubes)
- **4. HI line stacking** over redshift bins and stellar mass bins
- 5. Continuum calibration + imaging
- **6. Continuum-detected source extraction** and assembly of deep U-band catalogs

MeerKAT observing program Conclusions

This MeerKAT program offers a nice opportunity for the SKACH community to play with and face problems that will be of the same nature, and even of higher complexity when the SKA high-frequency array will be fully deployed, given the even larger amount of data to store/reduce/image/analyse.

The bright future of SKA lies in the 21 cm HI emission line that will be accessible for individual galaxies up to z=1.5.

Any help and expertise to share are warmly welcome!