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CMB Power Spectrum
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ACDM Theoretical Fit: Q,h* ~ 0.024, Q h*~ 0.14
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Small Scale Challenges in CDM Model

Core-Cusp Problem:
CDM Halo density profiles tend
to be ‘cuspy’!

Missing Satellite Problem: -
#DM subhalos (in simulations) >>
#galaxy satellites in Milky Way &

‘Too big to fail’ Problem: ‘.

DM subhalos (in simulations) so o

massive to not have visible stars 100,000 light years

(Potential Problem: Absence of Baryonic Processes (Feedback. Formation) and/or Nature
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Baryonic Processes

Strongly model dependent e.g. feedback
sensitivity to the gas threshold for galaxy
formation.
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Very Difficult to disentangle baryonic

eﬁeCtS in the SimUIatiOnS! . ?'H.I Hydro sims: LG-MR + EAGLE-HR,
= Vv_.=77 kms! +10% [165]

DMO sims: LG-MR + EAGLE-HR,
= y_ =77 kms +£10% [165]

. . | D Oh+2011 DG1
Some outliers like IC 2574 | Oh+2011 DG2

still unexplainable with Feedback! ' ® IC2574
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Still a viable window
Under observational

costraints!
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Fuzzy Dark Matter

(F(C)DM, BECDM, ULDM, ELBDM, (ultra-light) axion (-like) DM (ULA, ALP))

4+ Extremely light scalar particle (m ~ 10-20 - 10-22 V)

4+ Non-thermally produced (thus not ultra-hot)

4+ Clumps to form Bose-Einstein Condensate (BEC)!
4+ Quantum effects counteract gravity at small scales
4+ Tiny mass

— large de-broglie wavelength (~ 1/m)
— macroscopic quantum effects at kpc scales
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Governing Equations

A. Wave Formalism (Schrodinger-Poisson Equations)
hZ

ihoy = ——Viy+mVy
2m

V2V = 42Gm(|w|* = |y |°)

1Single Macroscopic WF of |

B. Madelung Formalism (Fluid Dynamics Representation)

0,0+ V - (p¥) =0 R
m

_ 1 —, 72 VP

6tT5+(T5-V)T5=——V<V—2 \/_) p=m|yl|’
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V2V = 4zGm(p — p,)
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Fuzzy Dark Matter Simulations

t=5.8 Gyr t =5.8 Gyr
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Challenges in Simulating Fuzzy Dark Matter

Both Mpc-scale and kpc-scales need to be =
Resolved for accurate evolution )W

Time step scaling: A ~ Ax”

Hydrodynamical codes are used in N-body
Simulation (but Fluid Formulation
For FDM evolution?)

So far sims. restricted to small box sizes of 10Mpc/h

14 "(2014)



Physics Informed Neural Networks

General Framework: %’:‘M’:“VQ\/
DINN(X, 0); 4] = f(X), X € Q @:g,zzg Z}ién"%'ﬁ_y
BINN(X, 0);] = gX) X € 0Q \\VA"/"\H@A

m Hidden Layer m Composed Loss

Adapted from F. Pioch et.al.2023

|

PDE and boundary conditions|
as additional _

Pretty Successful |

Climate Simulations! |

Raissi, Yazdani, Karinadakis 2020
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Schrodinger-Physics Informed Neural Networks (SPINN)

Neural Network

Input with parameters 0

Output Optimization with Physics Informed Loss

i Residual PDE \

Minimize

. Residual BC » Loss >0~

Residual IC /

x,y,z,t}y >NN(X; 0) = {R(P), S(P), V}
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Schrodinger-Poisson Equations used

h
l=— =
: 9= -2V 4 Svwe.o] )Py 1
T N A * + I:the strength of

VIV[¥(x, )] = (| P, 0)|°—1)  |potential

A — 0, Gravitational Potential Term is dominant in the SP Equations!

A — o0, Gravitational Potential Term vanishes, Free Schrodinger Equation
representing diffusion!

A = 1 throughout this work! |

—— — — _ —— — e ————— — __ _ ___
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Architecture & Optimization

Network: Simple Multi-Layered Perceptrons (MLPs)

Activations: Sinusoidal Functions in 1D (Siren)

in 3D, Sine + Wavelet- New Adaptive Activation (PINNsformer)

Optimization: Minimize Total Loss through backpropagation as usual to
obtain optimized Network,

(MSE: Mean Squared Error)
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Initial Functions Used

Initial density

1 D TeSt Fu nCtiOn: , % Initial data for PINN at tp

w(x,0) = \/ 1 +0.6sin (%x)

3D Test Function:
w(7.0) = \/1 +0.6sin (”—x> sin (”—y) sin (E)
4 4 4
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Density Predictions in 1D

Density Predictions at Different Times Density Visualization (Predicted by Neural Network)
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Checks on Density Predictions

Mass Conservation (Normalization) Relative Error in Density Predictions at Different Times
2.0 - »

Pred — Real
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Comparison with existing references

classical reference [)|?



https://arxiv.org/abs/2307.06032
https://arxiv.org/abs/2101.05821

Density Predictions in 3D

Density Predictions at Different Times

Radial Coordinate ()

[Overdensity collapse, well extends to 3D!
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Comparison with Analytical Result

Density at different times using Spectral Method
H 3.0

- 2.5

6 8 10
Radial Coordinate (r)




Relative Error

Relative Error in density at Different Times

| | | |}

4 o 8 10
Radial Coordinate ()

{Slightly high relative error at boundaries |
(need more collocation points there)! |




Results with Madelung Formalism

Density Predictions at Different Times




Work in Progress!
(Still to scale to larger times)

l
Unsupervised FDM PINNs with Intial conditions same as CDM case l
I
Supervised PINNs using large-scale CDM simulations as additional
data constraint
Generative Models for painting-in small-scale features
Reproducing Core-Halo Relations for FDM with PINNs

28
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Results : Loss Curve

250 500 750 1000 1250 1500 1750 2000

i Training is stopped as soon as total Loss Saturates!|
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Collocation Points

Positions of collocation points and boundary data

10 15 20 25
r

xe[08] re[0x [Denseenough tolearn the solution!

31




Periodic Boundary Conditions

Example in x-direction for Real part of Wavefunction and Potential:

Periodicity |

Ry)x=0,y,z,1) = Ryw)(x=L,y,z1)

O RW)(x =0,y,z,0) =0 R(y)x =L, y,z,1)

Vix=0,y,z,) =V(x=L,y,z,1)

0Vx=0,y,z,t) =0, V(x=L,y, 1)

MSE,0) =— ), | [RoPIXD) = R,DIED | + | So(IX)) = Ty (P)X))
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Residual Functions

i d
%m(\y)(x) = 0, Ry(P) + 5 ( Z 5;2659(‘11)) — V- S¢(P)

IResidual Contributions for |
ISchrodinger + Poisson
jequatons 000 |

l

=1
1 d

Rgn(X) = 0F,(¥) = — | 2 AR() |+ Vy- Ry(P)
=1

d
Ry(X) =Y EVy— (RfP) + Sp(¥)?) — 1.0)
=1

n

2 2 2
X | + | BgwXD| + | Ry(XD) ]
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Numerical Method (Mocz et. al. 2017)

2nd Order Unitary Spectral Method

4+ Calculate potential: 1

V= IFFT(
k2

FFT (47Gm(| |’ - \%\2)))

4+ Half-Step ‘Kick’:
y <« exp|—i(m/n)(At/2)V ]y Kick

4+ Full-Step ‘Drift’ in Fourier Space:
w < IFFT (exp[—iAt(h/m)k*/2]FFT(y)) Drift

4+ Update the potential:
V < IFFT (—i
k2

4+ Another Half-Step ‘Kick’:
y < exp|—i(m/n)(At/2)V ]y Kick

FFT (42Gm(|y|” - wfo\z)))



