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Ωbh2 ≈ 0.024, Ωmh2 ≈ 0.14ΛCDM Theoretical Fit:

BM:DM = 1:5 !

CMB Power Spectrum



Small Scale Challenges in CDM Model

Core-Cusp Problem:  
CDM Halo density profiles tend 
to be ‘cuspy’!

Missing Satellite Problem:  
#DM subhalos (in simulations) >> 
#galaxy satellites in Milky Way

‘Too big to fail’ Problem:  
DM subhalos (in simulations) so 
massive to not have visible stars

Potential Problem: Absence of Baryonic Processes (Feedback, Formation) and/or Nature 
of DM!
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Baryonic Processes

Strongly model dependent e.g. feedback 
sensitivity to the gas threshold for galaxy 
formation. 

Very Difficult to disentangle baryonic 
effects in the Simulations!

Some outliers like IC 2574

still unexplainable with Feedback!

 Oman et.al. 2015
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Alternative Dark Matter Models
Warm Dark Matter (WDM): favored mass range in tension with Ly  observation

& abundance of high-z galaxies 

α
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Self-interacting Dark Matter (SIDM): Needs fine-tuned cross-sections & 
struggles to explain full range of observations
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Alternative Dark Matter Models

Inconsistent

With microlensing 
observations!
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Alternative Dark Matter Models
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Alternative Dark Matter Models

Inconsistent

With microlensing 
observations!

No Empirical 
Detection so far!

Warm Dark Matter (WDM): favored mass range in tension with Ly  observation

& abundance of high-z galaxies 

α

Self-interacting Dark Matter (SIDM): Needs fine-tuned cross-sections & 
struggles to explain full range of observations

Still a viable window

Under observational 
costraints!
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Fuzzy Dark Matter

✦ Extremely light scalar particle (m  10-20 - 10-22 eV) 
✦ Non-thermally produced (thus not ultra-hot) 
✦ Clumps to form Bose-Einstein Condensate (BEC)! 
✦ Quantum effects counteract gravity at small scales 
✦ Tiny mass 
                    — large de-broglie wavelength (  1/m) 
                    — macroscopic quantum effects at kpc scales

∼

∼

(F(C)DM,  BECDM, ULDM, ELBDM, (ultra-light) axion (-like) DM (ULA, ALP))
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Governing Equations

iℏ∂tψ = −
ℏ2

2m
∇2ψ + mVψ

∇2V = 4πGm( |ψ |2 − |ψ0 |2 )

A. Wave Formalism (Schrödinger-Poisson Equations)

B. Madelung Formalism (Fluid Dynamics Representation)
∂tρ + ⃗∇ ⋅ (ρ ⃗v) = 0

∂t ⃗v + ( ⃗v ⋅ ⃗∇ ) ⃗v = −
1
m

⃗∇ (V −
ℏ2

2m

∇2 ρ

ρ

= Q

)

∇2V = 4πGm(ρ − ρ0)

ψ =
ρ
m

eiS

ρ = m |ψ |2

v =
ℏ
m

∇S

“Quantum Pressure”
Q ill-defined at  !ρ = 0

Mean Field Interpretation:

Single Macroscopic WF of

BEC
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Fuzzy Dark Matter Simulations

Fluid Solver unable to 

capture interference 
effects!

Stick to SP-Equations 
for evolution!

13  A. Kunkel et.al. 2024



Challenges in Simulating Fuzzy Dark Matter

Both Mpc-scale and kpc-scales need to be 

Resolved for accurate evolution

Time step scaling: Δt ∼ Δx2

Hydrodynamical codes are used in N-body

Simulation (but Fluid Formulation

For FDM evolution?)

So far sims. restricted to small box sizes of 10Mpc/h

14 Schive, Chieuh, & Broadhurst (2014)



Physics Informed Neural Networks

Adapted from F. Pioch et.al.2023


Custom Loss Function: with 
PDE and boundary conditions 
as additional constraints

Pretty Successful in Fluid and 
Climate Simulations!
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𝒟[NN(X, θ); λ] = f(X), X ∈ Ω
ℬ[NN(X, θ); ] = g(X) X ∈ ∂Ω

General Framework:

Raissi, Yazdani, Karinadakis 2020



Schrodinger-Physics Informed Neural Networks (SPINN) 

{x,y,z,t} { }→NN(X; θ) ≡ ℜ(Ψ), ℑ(Ψ), V
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Schrodinger-Poisson Equations used
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i
∂
∂t

Ψ(x, t) = (−
λ
2

∇2 +
1
λ

V[Ψ(x, t)])Ψ(x, t)

∇2V[Ψ(x, t)] = ( |Ψ(x, t) |2 − 1)

 : the strength of 
potential

1
λ

 Gravitational Potential Term is dominant in the SP Equations!λ → 0,

 Gravitational Potential Term vanishes, Free Schrodinger Equation 
representing diffusion!
λ → ∞,

 throughout this work!λ = 1

λ =
ℏ
m

⟹



Architecture & Optimization
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θ* = arg min
θ

(MSEPDE + MSEb + MSEi)

Network: Simple Multi-Layered Perceptrons (MLPs)

Activations: Sinusoidal Functions in 1D (Siren)


in 3D, Sine + Wavelet- New Adaptive Activation (PINNsformer)

Optimization: Minimize Total Loss through backpropagation as usual to 
obtain optimized Network,

(MSE: Mean Squared Error)



Initial Functions Used
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ψ(x,0) = 1 + 0.6 sin ( πx
4 )

1D Test Function:

3D Test Function:

ψ( ⃗x,0) = 1 + 0.6 sin ( πx
4 ) sin ( πy

4 ) sin ( πz
4 )



Results



Density Predictions in 1D
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Overdensities collapse as expected!



Checks on Density Predictions
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Mass is largely conserved Decent Match with Spectral Method



Comparison with existing references
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arXiv:2307.06032 arXiv:2101.05821
Well agrees with existing works!

https://arxiv.org/abs/2307.06032
https://arxiv.org/abs/2101.05821


Density Predictions in 3D
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Overdensity collapse, well extends to 3D!



Comparison with Analytical Result
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Spectral Method results 
indicate the same !



Relative Error

26

Slightly high relative error at boundaries 
(need more collocation points there)!



Results with Madelung Formalism
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Doesn’t learn the interference features !



Work in Progress! 
(Still to scale to larger times)

01 Unsupervised FDM PINNs with Intial conditions same as CDM  case

02

03 Generative Models for painting-in small-scale features

04

Supervised PINNs using large-scale CDM simulations as additional 
data constraint

Reproducing Core-Halo Relations for FDM  with PINNs
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THANK YOU!
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Ashutosh Kumar Mishra 
Email: ashutosh.mishra@epfl.ch

Question?



Results : Loss Curve
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Training is stopped as soon as total Loss Saturates!



Collocation Points 
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x ∈ [0,8] t ∈ [0,π] Dense enough to learn the solution!



Periodic Boundary Conditions

ℜ(ψ)(x = 0,y, z, t) = ℜ(ψ)(x = L, y, z, t)
∂xℜ(ψ)(x = 0,y, z, t) = ∂xℜ(ψ)(x = L, y, z, t)

Example in x-direction for Real part of Wavefunction and Potential:

V(x = 0,y, z, t) = V(x = L, y, z, t)
∂xV(x = 0,y, z, t) = ∂xV(x = L, y, z, t)

MSEb(θ) =
1
Nb

Nb

∑
n=1 [ ℜθ(Ψ)(Xb

n) − ℜb(Ψ)(Xb
n)

2
+ ℑθ(Ψ)(Xb

n) − ℑb(Ψ)(Xb
n)

2
+ Vθ(Xb

n) − Vb(Xb
n)]
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Periodicity for Real Part:

Periodicity for Potential:

Loss Term for Boundary



Residual Functions

ℛℜ(Ψ)(X) = ∂tℜθ(Ψ) +
1
2 (

d

∑
i=1

∂2
xi
ℑθ(Ψ)) − Vθ ⋅ ℑθ(Ψ)

ℛℑ(Ψ)(X) = ∂tℑθ(Ψ) −
1
2 (

d

∑
i=1

∂2
xi
ℜθ(Ψ)) + Vθ ⋅ ℜθ(Ψ)

ℛV(X) =
d

∑
i=1

∂2
xi
Vθ − ((ℜθ(Ψ)2 + ℑθ(Ψ)2) − 1.0)

MSEPDE(θ) =
1
Nr

Nr

∑
n=1 [ ℛℜ(Ψ)(Xr

n)
2

+ ℛℑ(Ψ)(Xr
n)

2
+ ℛV(Xr

n)
2

]
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Loss Term for Enforcing 
PDEs

Residual Contributions for 
Schrodinger + Poisson 
equations



ψ ← exp[−i(m/ℏ)(Δt/2)V]ψ

ψ ← IFFT (exp[−iΔt(ℏ/m)k2/2]FFT(ψ))

V ← IFFT (−
1
k2

FFT (4πGm( |ψ |2 − |ψ0 |2 )))

Kick

Drift

Kick

Numerical Method (Mocz et. al. 2017) 
2nd Order Unitary Spectral Method

✦ Calculate potential:
V = IFFT (−

1
k2

FFT (4πGm( |ψ |2 − |ψ0 |2 )))
✦ Half-Step ‘Kick’:

✦ Full-Step ‘Drift’ in Fourier Space:

✦ Update the potential:

✦ Another Half-Step ‘Kick’:
ψ ← exp[−i(m/ℏ)(Δt/2)V]ψ


