Tidal Disruption Events with SPH-EXA

Noah Kubli ¹, Alessia Franchini ¹, Lucio Mayer ¹, Eric Coughlin ², Christopher Nixon ³

¹ Institut für Astrophysik, UZH

² Department of Physics, Syracuse University (USA)

³ School of Physics and Astronomy, University of Leeds (UK)

Tidal disruption events

stellar stream is compressed (Nozzle shock)

tidal forces disrupt the star flow collides with itself

Stellar sources

intermediate-mass black holes disrupt white dwarfs

red giants can only be disrupted by supermassive black holes

Properties

Detections of TDEs

Luminosity vs Temperature for UV / optical (green) and X-ray-detected (black) TDEs

Light curves and corresponding mass accretion rates (van Velzen et al. 2020)

- ~100 TDEs have been detected
- LSST will greatly improve this
- bimodal distribution of spectrum
- emission mechanism not fully clear
- probably UV and optical through shocks, X-rays through accretion disk

Sources: Gezari (2021)

Radio emission

- Peaked synchrotron spectrum that evolves to lower frequency with time
- Visible for years (much longer than optical/X-ray emission)
- Half of TDEs show a radio follow-up
- Synchrotron emission (from outflows and jets)
- origin not well understood
- very rarely relativistic jet

Credits to Goodwin et al. 2024

shift to lower frequencies

Credits to Goodwin et al. 2024

What can they be used for?

- finding dormant supermassive black holes
- characterizing intermediate-mass black holes (via white dwarf TDEs)
- improve the knowledge of occupation fractions of supermassive black holes and intermediate-mass black holes in galaxies
- Multimessenger astronomy (High-energy neutrinos and gravitational waves)

SPH-EXA

Florina Ciorba Rubén Cabezón

Osman Seckin Simsek Yiqing Zhu Lukas Schmidt

Lucio Mayer Noah Kubli Darren Reed Pedro Capelo

Sebastian Keller
Jean-Guillaume
Piccinali
Jonathan Coles
Jean Favre

- modern SPH implementation (generalized volume elements, integral approach to derivatives, AV cleaner)
- coupled with N-body solver
- subgrid physics
- Fully on GPUs
- Scalability for exa-scale computing

SPH-EXA: Excellent scalability

Weak scaling of SPH-EXA. Left: Evrard collapse, right: gravity-only (N-body) test up to 8 T particles

Turbulence and gravity in star-formation (TGSF) simulations with SPH-EXA

- will be the largest turbulence simulation for star formation (1 trillion particles)
- 2000 nodes on LUMI-G

Numerical simulations (Collaboration with Christopher Nixon (Leeds, UK), Eric Coughlin (Syracuse University, USA)

- SPH-EXA has all the required capabilities
- Recreate the results from Fancher et al. 2023 using SPH-EXA (done)
- Then continue with higherresolution problems (ongoing).
 This is important to correctly catch the emission mechanism.
- Fancher et al. 2023:
- investigates the stellar stream after first pericentre passage; using multiple resolutions up to 128M
- finds important role for selfgravity
- evidence for gravitational collapse

- The numerical problem is conceptually easy:
- Black hole (10^6 M_star) modeled by Newtonian potential
- Star is forced to be a polytrope with tidal radius = pericentre distance
- The star starts on a parabolic orbit with pericentre distance
 >> Schwarzschild radius

initial shape of the star

Before pericentre

star is deformed and divided in a bound and unbound part Mass distribution function of binding energy (SPH-EXA 128M)

After pericentre passage

Mass distribution function of binding energy (SPH-EXA 128M)

development of "wings" through self-gravity (Fancher et al. 2023)

Comparison to Fancher et al. 2023

We find good agreement between the runs

self-gravity vs pressure forces

While self-gravity is responsible for producing the wings, fluid pressure forces lead to a general broadening of the distribution

Longer term evolution

-100

-800

-600

-400

code length

-200

Current work

Time needed for simulations.

Blue: Fencher et al.

2023;

Green: our runs with

SPH-EXA

- investigate gravitational collapse of the stream; should have a crucial dependence on gamma
- modify gamma (needs new initial conditions)
- go to much higher resolutions (~100b particles, GPU and efficient node-parallelism greatly beneficiary, ideal for SPH-EXA).
- simulate long-term evolution (multiple physical months)

The bound part is coming back; soon the stream will collide with itself

22000 code lengths

longer term evolution after second pericentre passage (SPH-EXA)

Outlook

High-resolution and long simulation timescales will allow to:

- show convergence in nozzle shock properties
- show convergence in debris structure and dynamics
- late-phase dynamics (low-energy emission in radio spectrum)
- investigate clumping of the stellar stream through self-gravity

After the long-time high-resolution simulations the next step will be to add additional physics:

- Radiation transport
- GR corrections
- Magnetic fields
- ISM envelope model