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Introduction

● 4 PB data collected in SMART Pulsar survey (MWA)
● Shallow processing (~10% data) using Presto: ~300K CPU hours 
● Problem: Full processing using Presto in ~23 years
● Motivation: Pulsars help studying extreme physics
● Goal: GPU acceleration to enable full/faster processing
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De-Dispersion

● Dispersion: frequency dependent delay from interstellar medium
● De-dispersion for trial DM values

○ Time domain: shifting time signals and adding
○ Frequency domain: shifting in fourier domain

● Full search on SMART dataset: ~15000 DM values
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● Memory bound
● #DM FFTs 

● Compute bound
● #channels FFTs
● Can skip IFFT 
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GPU Implementation

Existing CUDA based implementation: dedisp (github.com/ajameson/dedisp)

My contributions to dedisp (github.com/piyushplcr7/dedisp_tests):

● FITS input (SMART data format), optimized reads, handling float input type
● Compatibility with newer CUDA version
● Bug fixes: failing CuFFT calls, incorrect Fourier freq., non integer delay
● Usable CLI similar to Presto

Next steps:

● Porting to AMD GPUs
● MPI + GPU implementation for full input (~589 GB)
● Integration with the acceleration/jerk search, using FFT directly
● GPU specific optimizations
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Preliminary Results

● Optimized dedisp vs Presto vs PrestoZL
● No sub-bands, no barycentering. 2 Million points, 3072 channels.
● CPU: Ryzen 7 7800X3D, GPU: RTX 4070 Ti Super, Samsung 970 Evo Plus

● Kuma (H100): 15000 DMs,  116.223 s!

Dedisp (FDD, GPU) PrestoZL (TDD, 
GPU)

Presto (TDD, CPU)
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Frequency Domain Search

● Periodicity search: Peaks in frequency spectrum
● Acceleration/jerk search: matched filtering in Fourier domain with templates

● Acceleration/jerk search capture effects from orbital motion of Pulsar
● Parallelizable algorithm, same filters for all de-dispersed time series
● Full search on SMART dataset: ~10000 filters
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GPU Implementation

Existing GPU implementations (CUDA)

● jintaoluo/presto2_on_gpu : 10+ yrs old code (No jerk search)
● chrislaidler/presto             : 6+ yrs old code (No jerk search)
● Astro-accelerate               : Integrated code, can’t handle low frequencies efficiently
● PrestoZL                          : Recent, no FDD only TDD. Jerk search implemented
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GPU Implementation

Existing GPU implementations (CUDA)

● jintaoluo/presto2_on_gpu : 10+ yrs old code (No jerk search)
● chrislaidler/presto             : 6+ yrs old code (No jerk search)
● Astro-accelerate               : Integrated code, can’t handle low frequencies efficiently
● PrestoZL                          : Recent, no FDD only TDD. Jerk search implemented

Progress:

● Extracted Jerk search from Astro-accelerate into a standalone executable

Next steps:

● Further optimizations in Astro-accelerate (naive copy of Presto)
● Exploring PrestoZL
● Porting to AMD GPUs
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Preliminary Results

● Astro-accelerate vs Presto 
● Harmonic summing: false, interbinning: true. 2 Million samples
● CPU: Ryzen 7 7800X3D, GPU: RTX 4070 Ti Super, Samsung 970 Evo Plus

Presto (CPU)
Astro 
accelerate

kernels 1 2 4 8 GPU
33 0.178 0.137 0.1 0.105 0.304

357 1.318 0.766 0.431 0.268 0.492
1111 4.014 2.272 1.192 0.859 1.233
4221 19.217 9.808 5.501 3.023 4.102

25551 205.56 112.495 68.914 47.432 18.04
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Questions?
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