
Speeding up the Pulsar
Search Pipeline

Piyush Panchal (SCITAS, EPFL)

1

Introduction

● 4 PB data collected in SMART Pulsar survey (MWA)

2

Introduction

● 4 PB data collected in SMART Pulsar survey (MWA)
● Shallow processing (~10% data) using Presto: ~300K CPU hours

3

Introduction

● 4 PB data collected in SMART Pulsar survey (MWA)
● Shallow processing (~10% data) using Presto: ~300K CPU hours
● Problem: Full processing using Presto in ~23 years

4

Introduction

● 4 PB data collected in SMART Pulsar survey (MWA)
● Shallow processing (~10% data) using Presto: ~300K CPU hours
● Problem: Full processing using Presto in ~23 years
● Motivation: Pulsars help studying extreme physics

5

Introduction

● 4 PB data collected in SMART Pulsar survey (MWA)
● Shallow processing (~10% data) using Presto: ~300K CPU hours
● Problem: Full processing using Presto in ~23 years
● Motivation: Pulsars help studying extreme physics
● Goal: GPU acceleration to enable full/faster processing

6

Pulsar Searching

● Pulsar: Rotating Neutron star, regular EM radiation from poles

7

Pulsar Searching

● Pulsar: Rotating Neutron star, regular EM radiation from poles
● Signal dispersion from interstellar medium, low SNR

8

Pulsar Searching

● Pulsar: Rotating Neutron star, regular EM radiation from poles
● Signal dispersion from interstellar medium, low SNR
● Detection steps (post beamforming)

○ De-dispersion
○ Frequency domain search
○ Folding

9

Pulsar Searching

● Pulsar: Rotating Neutron star, regular EM radiation from poles
● Signal dispersion from interstellar medium, low SNR
● Detection steps (post beamforming)

○ De-dispersion
○ Frequency domain search
○ Folding

10

De-Dispersion

● Dispersion: frequency dependent delay from interstellar medium

11

De-Dispersion

● Dispersion: frequency dependent delay from interstellar medium
● De-dispersion for trial DM values

12

De-Dispersion

● Dispersion: frequency dependent delay from interstellar medium
● De-dispersion for trial DM values

○ Time domain: shifting time signals and adding
○ Frequency domain: shifting in fourier domain

13

De-Dispersion

● Dispersion: frequency dependent delay from interstellar medium
● De-dispersion for trial DM values

○ Time domain: shifting time signals and adding
○ Frequency domain: shifting in fourier domain

● Full search on SMART dataset: ~15000 DM values

14

Time vs Frequency Domain De-Dispersion

Time domain

channels

Time

channels

Time

Sum all
channels

Shift

Dispersed time series

15

Time vs Frequency Domain De-Dispersion

Time domain Frequency domain

channels

Time

channels

Time

Sum all
channels

channels

Time

channels

Fourier frequency
Channelwise FFT

Shift

channels

Fourier frequency (w)

Mult. with exp(-i * w * shift)

Dispersed time series

Sum and IFFTDispersed time series

16

Time vs Frequency Domain De-Dispersion

Time domain Frequency domain

channels

Time

channels

Time

Sum all
channels

channels

Time

channels

Fourier frequency
Channelwise FFT

Shift

channels

Fourier frequency (w)

Mult. with exp(-i * w * shift)

Dispersed time series

Sum and IFFTDispersed time series

● Memory bound
● #DM FFTs

● Compute bound
● #channels FFTs
● Can skip IFFT

17

GPU Implementation

Existing CUDA based implementation: dedisp (github.com/ajameson/dedisp)

18

GPU Implementation

Existing CUDA based implementation: dedisp (github.com/ajameson/dedisp)

My contributions to dedisp (github.com/piyushplcr7/dedisp_tests):

● FITS input (SMART data format), optimized reads, handling float input type
● Compatibility with newer CUDA version
● Bug fixes: failing CuFFT calls, incorrect Fourier freq., non integer delay
● Usable CLI similar to Presto

19

GPU Implementation

Existing CUDA based implementation: dedisp (github.com/ajameson/dedisp)

My contributions to dedisp (github.com/piyushplcr7/dedisp_tests):

● FITS input (SMART data format), optimized reads, handling float input type
● Compatibility with newer CUDA version
● Bug fixes: failing CuFFT calls, incorrect Fourier freq., non integer delay
● Usable CLI similar to Presto

Next steps:

● Porting to AMD GPUs
● MPI + GPU implementation for full input (~589 GB)
● Integration with the acceleration/jerk search, using FFT directly
● GPU specific optimizations

20

Preliminary Results

● Optimized dedisp vs Presto vs PrestoZL

21

Preliminary Results

● Optimized dedisp vs Presto vs PrestoZL
● No sub-bands, no barycentering. 2 Million points, 3072 channels.

22

Preliminary Results

● Optimized dedisp vs Presto vs PrestoZL
● No sub-bands, no barycentering. 2 Million points, 3072 channels.
● CPU: Ryzen 7 7800X3D, GPU: RTX 4070 Ti Super, Samsung 970 Evo Plus

Dedisp (FDD, GPU) PrestoZL (TDD,
GPU)

Presto (TDD, CPU)

1000 DMs 28.95 s > 139.77 s (800 DM) 8 hrs+

500 DMs 23.29 s 98 s 4.75 hrs

23

Preliminary Results

● Optimized dedisp vs Presto vs PrestoZL
● No sub-bands, no barycentering. 2 Million points, 3072 channels.
● CPU: Ryzen 7 7800X3D, GPU: RTX 4070 Ti Super, Samsung 970 Evo Plus

● Kuma (H100): 15000 DMs, 116.223 s!

Dedisp (FDD, GPU) PrestoZL (TDD,
GPU)

Presto (TDD, CPU)

1000 DMs 28.95 s > 139.77 s (800 DM) 8 hrs+

500 DMs 23.29 s 98 s 4.75 hrs

24

Frequency Domain Search

● Periodicity search: Peaks in frequency spectrum

25

Frequency Domain Search

● Periodicity search: Peaks in frequency spectrum
● Acceleration/jerk search: matched filtering in Fourier domain with templates

26

Frequency Domain Search

● Periodicity search: Peaks in frequency spectrum
● Acceleration/jerk search: matched filtering in Fourier domain with templates

● Acceleration/jerk search capture effects from orbital motion of Pulsar

27

Frequency Domain Search

● Periodicity search: Peaks in frequency spectrum
● Acceleration/jerk search: matched filtering in Fourier domain with templates

● Acceleration/jerk search capture effects from orbital motion of Pulsar
● Parallelizable algorithm, same filters for all de-dispersed time series
● Full search on SMART dataset: ~10000 filters

28

GPU Implementation

Existing GPU implementations (CUDA)

● jintaoluo/presto2_on_gpu : 10+ yrs old code (No jerk search)
● chrislaidler/presto : 6+ yrs old code (No jerk search)
● Astro-accelerate : Integrated code, can’t handle low frequencies efficiently
● PrestoZL : Recent, no FDD only TDD. Jerk search implemented

29

GPU Implementation

Existing GPU implementations (CUDA)

● jintaoluo/presto2_on_gpu : 10+ yrs old code (No jerk search)
● chrislaidler/presto : 6+ yrs old code (No jerk search)
● Astro-accelerate : Integrated code, can’t handle low frequencies efficiently
● PrestoZL : Recent, no FDD only TDD. Jerk search implemented

Progress:

● Extracted Jerk search from Astro-accelerate into a standalone executable

Next steps:

● Further optimizations in Astro-accelerate (naive copy of Presto)
● Exploring PrestoZL
● Porting to AMD GPUs

30

Preliminary Results

● Astro-accelerate vs Presto

31

Preliminary Results

● Astro-accelerate vs Presto
● Harmonic summing: false, interbinning: true. 2 Million samples

32

Preliminary Results

● Astro-accelerate vs Presto
● Harmonic summing: false, interbinning: true. 2 Million samples
● CPU: Ryzen 7 7800X3D, GPU: RTX 4070 Ti Super, Samsung 970 Evo Plus

Presto (CPU)
Astro
accelerate

kernels 1 2 4 8 GPU
33 0.178 0.137 0.1 0.105 0.304

357 1.318 0.766 0.431 0.268 0.492
1111 4.014 2.272 1.192 0.859 1.233
4221 19.217 9.808 5.501 3.023 4.102

25551 205.56 112.495 68.914 47.432 18.04

33

Questions?

34

